
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1897

ISSN No. 0976-5697

A Comprehensive Study on Code Optimization- Levels & Techniques

Neha Bhateja
Department of Computer Science & Engineering

Amity University Haryana, India

Abstract: Language translators are required to convert one language into another language. Compiler is one of the language translator which is
used to convert the high-level language into machine understandable language. A good compiler can have a huge effect on code performance.
for this purpose, code optimization is performed to improve the

INTRODUCTION

Compiler is one of the software development tool which is
used to convert the high level language into assembly
language which is further converted into machine language
in terms of 0’s and 1’s with the help of an assembler. The
compiler performs its tasks into various phases. Each phase
works on the output of previous phase. Following are the
phases of a compiler structure:

speed and size of the code.

Keywords: Compiler, Code Optimization, Code Generation, Dead code, Branch Optimization.

Fig: Phases of Compiler [2]

Lexical Analysis Phase: It accepts the character from the
source code and group them into stream of tokens such as a
keyword, an identifier, a character. The sequence of
characters forming a token called lexeme.
Syntax Analysis Phase: Syntax Analysis phase accepts the
output of lexical phase as an input. It generates a structure
on the token streams. This structure is known as parse tree.
Semantic Analysis Phase: the important component of
semantic analysis is type checking. It checks the source code
for semantic errors and missing information.
Intermediate Code Generation: the syntax and semantic
analysis phase generate an intermediate code of the source
code which is easy to produce and translate into machine
code. Intermediate representation can be done in various
forms like three address code, quadruples.

Code Optimization: to improve the performance in terms of
speed, the code optimization is performed on the
intermediate code.
Code Generation: Code generator phase is responsible to
generate the final code i.e. machine code.

CODE OPTIMIZATION

Code optimization is a technique to transform the source
code by making some changes in the code with an intent to
achieve the quality and its efficiency.
Code optimization is performed by reducing the length of
the code by removing the repeatable and unnecessary lines
of code. An optimized program becomes smaller in size,
used less system resources like memory and rapidly
executes all input and output operations [1].
During compilation process, optimization can be performed
at various phases.
• Beginning Phase: At this phase user can use better
algorithms to alter or rearrange the code.
• Intermediate Phase: Compiler can improve loops,
procedure calls, and address calculations
• Target Phase: While producing the target machine code,
the compiler can use the CPU registers efficiently.

Fig: optimization at different phase

Neha Bhateja, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1897-1899

© 2015-19, IJARCS All Rights Reserved 1898

BENEFITS OF OPTIMIZATION PROCESS

To perform the optimization on code helps the program
developers to achieve their goals like [4]:
• Higher Performance
The overall performance of the system is degraded due to
the maximum execution time taken by the application code
to execute. By using the optimization process, the compiler
produce code much faster which helps the developers to
gain the better performance in term of execution speed.
• Lower Development Cost
By opting the optimization techniques system development
cost can be reduced. For example, a better performance
program could be executing without using a higher cost
processor. Memory requirements can be decreased by
optimizing the code which further helps the developer to
reduce the production cost by using less memory.
• Less Development Time
The development of software applications becomes more
complicated day by day. As a result, the concept of reuse the
code is one of the best method which helps the developers to
reduce the development time and to deliver the new
products on time.

LEVELS AND TECHNIQUES OF OPTIMIZATION
PROCESS

Optimization process can be performed either manually by
the programmers or using the automatic optimizers, called
optimizing compilers [5].
Optimization process is categorized into two levels i.e. High
level and Low level optimization process. High level
optimization process is performed with a goal to optimize
the design of a structure. It is performed by the programmers
who can handle functions, classes, loops, branches in source
code etc. whereas, low level optimization is performed when
source code is compiled into the machine code. Following
are the code optimization techniques [4,5]:
• Branch Optimization: the source code is rearranged in
such a way to reduce the logic of branches and to merge the
separated blocks of program code.
• Common subexpression elimination: In this, those
expressions or operations that represent the same meaning
are eliminated by using the previous value.
• Dead Code elimination: A part of the source code that
never be accessed or its value never be used in the program
should be eliminated.
• Dead store Elimination: Dead Store elimination technique
helps the compiler to eliminate those variables who stores a
value but never be used. These variables are called dead
store, which waste the system resources like memory and
processor time.
• Constant Propagation: constant propagation means
assigning the value of a constant to the variables at the
compile time. It can also simplify the conditional branches
to one or many unconditional statements.
• Global Register Allocation: Register allocation is a
process of assigning the CPU registers to the variables.
Allocation can be done at various levels like, local
allocation, global allocation and inter procedural allocation.
The compiler used the concept of graph coloring algorithms
at the time of compilation to allocate the number of
variables to few set of registers.

• Instruction Scheduling: As, all the instruction defined in
the source code are essential. To maximize the instruction
parallelism, instruction scheduling technique is used in
compiler optimization process. In this, the instructions are
rearranged or rewrite to improve the performance of the
system in term of execution time without changing the
actual meaning of the code. It is performed before or after
the register allocation process.

• Interprocedural Analysis: this is one of the code
optimization technique that perform the analysis on whole
source code rather than a single block. It is used to
eliminate the duplicate calculations and those expressions
that used inefficient memory.

ISSUES WITH THE OPTIMIZATION PROCESS

• The basic idea of optimization process is to improve the
overall performance of the system rather than improving the
complexity of an algorithm [3].
• A compiler handles only those set of instructions that are
grouped together in a single module or file. It cannot be
considered the referenced information that is defined or
locate in another module.
• While dealing with the huge program code, the
optimization process is a time consuming as it takes a lot of
time.
• Due to increase the complexity between the interaction of
different modules, it is impossible to find the optimal result
from the optimization process

CONCLUSION

Code optimization is used to optimize the source code. The
developers can achieve their targets in term of execution
speed, cost and reduce development time by using the
various optimization techniques. Optimization process helps
the compiler to generate an optimal machine code. The
performance of a compiler is one of the important factor
which affect the performance of a program. So the
developers have to check the optimization capability before
selecting any compiler.

REFERENCES

1. Clinton F. Goss (August 2013) [First published June

1986]. "Machine Code Optimization - Improving Executable
Object Code" (PDF) (Ph.D. dissertation). Computer Science
Department Technical Report #246. Courant Institute, New
York University. arXiv:1308.4815 Retrieved 22 Aug 2013.

2. Cooper, Keith D., and Torczon, Linda, Engineering a
Compiler, Morgan Kaufmann, 2004, ISBN 1-55860-699-
8 page 404

3. T. Jones, M. O’Boyle, and O. Ergin. Evaluating the effects of
compiler optimisations on AVF. In INTERACT ’08:
Proceedings of the 2008 Annual Workshop on the Interaction
T. Jones, M. O’Boyle, and O. Ergin. Evaluating the effects of
compiler optimisations on AVF. In INTERACT ’08:
Proceedings of the 2008 Annual Workshop on the Interaction.

4. Chabbi, M.M., Mellor-Crummey, J.M., Cooper, K.D.:
Efficiently exploring compiler optimization sequences with
pairwise pruning. In: Proceedings of the 1st International
Workshop on Adaptive Self-Tuning Computing Systems for
the Exaflop Era, EXADAPT 2011, pp. 34–45. ACM, New
York (2011)

http://www.clintgoss.com/mco/Goss_1986_MachineCodeOptimization.pdf�
http://www.clintgoss.com/mco/Goss_1986_MachineCodeOptimization.pdf�
https://en.wikipedia.org/wiki/ArXiv�
https://arxiv.org/abs/1308.4815�
https://en.wikipedia.org/wiki/Special:BookSources/1558606998�
https://en.wikipedia.org/wiki/Special:BookSources/1558606998�

Neha Bhateja, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1897-1899

© 2015-19, IJARCS All Rights Reserved 1899

5. Epshteyn, A., Garzarán, M.J., DeJong, G., Padua, D.A., Ren,
G., Li, X., Yotov, K., Pingali, K.K.: Analytic Models and
Empirical Search: A Hybrid Approach to Code Optimization.

In: Ayguadé, E., Baumgartner, G., Ramanujam, J.,
Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 259–
273. Springer, Heidelberg (2006).

