
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1588

ISSN No. 0976-5697

A Review Paper on Information Retrieval Techniques for Point and Range Query in
Database System

Monika Yadav

Dept. of Computer Science and Applications,
 Kurukshetra University, Kurukshetra, India

Abstract: Information retrieval (IR) is a science of searching for information. A query is used to extract information from database where fast
query processing is the main issue. The mechanisms like index and hash table can be used to solve this problem but the main challenge is to find
a proper index which improves query performance. This paper describes various indexing and hashing techniques in terms of query support,
structure and application. B-tree, B+-tree, bitmap index are discussed for point query followed by spatial indexing techniques like quad tree, k-d
tree, R-tree, R+-tree, R*-tree for range query and multidimensional data.

Keywords: B-tree, B+-tree, Bitmap index, Hashing, Index, Spatial indexing.

1. INTRODUCTION

Information retrieval is the tracing of information from
stored data. Many universities, public libraries and web
search engines uses information retrieval system.
Early use of computer for IR- In 1945, the idea to search for
relevant information in computers was made familiar in the
article ‘As We May Think by Vannevar Bush’

a) Structured data(SD)

 [1]. In 1948, a
machine which was capable of searching for text references
associated with subject code was created called ‘UNIVAC’.
In 1970s large scale retrieval system came into use. After
this IR as a research discipline focus on two important
developments:
 a) How the documents to be indexed?
b) How these documents to be retrieved?
In IR system first all need to know about what is data? So,
data is defined as characters which may be recorded on
magnetic, optical or mechanical recording media. The two
types of storage data are:-

b) Unstructured data(USD)
Structured data is applied to databases and unstructured data
is applied to everything else. SD is used to access SQL
(structured query language) and this provides a better way to
manage data. In Sql, data is retrieved with the help of query;
a query is request for information from database. A
database
query can either be a select query or an action query. Action
query performs insertion, updation and deletion on data.
SQL is the standard for query language and its extensions
are MySQL, AracleSQL, NuoDB. Other type of query is
web search query i.e. a query that is typed in search engines
such as Google, Yahoo or Bing etc. When user enters a
query in web search then search engine uses an algorithm to
determine results. For fast query processing indexing
techniques are used in search engine for information
retrieval. Indexing is crucial part of IR system. Traditional
indexing techniques are only for point query. For range and
multidimensional data, spatial indexing is used. K-D tree,
Quad tree, R-tree, R+-tree, R*-tree are popular techniques of
spatial indexing.

This paper is organized as follows. In section 2 indexing and
its techniques are introduced. Section 3 describes bitmap
index. In section 4 spatial indexing and its techniques are
introduced. Section 5 concludes the paper.

2. INDEXING

A database index helps in improve speed of data retrieval
operations in a database table. If database use indexes then
there's no need to look each row in table each time a
database table is accessed. Index in database works same as
index used in a book. The use of query in indexing gives
much better performance in IR. Indexing is also used for
sorting the data. Index should be chosen properly so that it
takes small space and supports ad-hoc and complex queries.
There are different types of index used in databases i.e.
clustering index, primary index and secondary index. Sparse
and dense index are types of primary index. The popular
techniques of indexing are-

2.1 B-TREE
B-tree is a self- balancing tree data structure

2
which was

proposed by Rudolf Bayer in []. It performs searches,
insertions and deletions in logarithmic time. B-tree is
generalization of binary search tree in which a tree node can
contain more than two children. B-tree of order m satisfies
following properties:
a) Each node in B-tree has at most m children and at least
m/2 children.
b) The root has minimum two children if it is not a child
node.
c) All leaf nodes are at the same level.
d) A non leaf node have m children contains m-1 keys.
In B-tree each node contain set of keys and pointers. It is a
shallow but wide data structure store millions and billions of
items. Its internal nodes have variable number of child
nodes with predefined range. Each time data is inserted and
deleted from a node its child node changes. In order to
maintain B-tree, non leaf nodes may be join or split. In B-
tree records are stored at internal nodes as well as at leaf
nodes which shows as in Fig1.

https://en.wikipedia.org/wiki/As_We_May_Think�
https://en.wikipedia.org/wiki/Vannevar_Bush�
https://en.wikipedia.org/wiki/Tree_data_structure�
https://en.wikipedia.org/wiki/Logarithmic_time�

Monika Yadav, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1588-1592

© 2015-19, IJARCS All Rights Reserved 1589

 Fig1- B-TREE INDEX [3]

Mostly MySQL storage engine uses B-tree. There is no
redundancy present is B-tee because every search key value
stores only once. The main problem occur when internal
nodes increase in B-tree then depth of tree also increases
and performance of B-tree decreases. B-tree uses for linear
data and its complexity is O(log n). Apple’s file system,
HFS+ and some Linux file systems use B-tree.

2.2 B +-TREES INDEX
B+-tree is a tree structure in which every path from root
node to leaf node of tree is of same length [4]. It is a
multilevel index and nodes in B+ tree are represented
similar as B tree. There is no paper on B+-tree but a survey
on B-tree also covers B+-tree. Data in B+-tree is stored only
on leaf nodes in sorted order which is shown in Fig 2. The
complexity of B+-tree is O (log n). In B+-tree there is no
need of file organization to maintain the performance. If
order of B+-tree is b(capacity of node) then number of
children to a node (m) is b/2<=m<=b and number of keys
in a node are at least b-1 and at most b. Main problem in
B+-tree is that it adds space overhead with complexity O
(n). To remove this space overhead a variant of B+-tree is
used that is

Fig 2- B+-TREE INDEX [5]

compact form. It uses the empty space of siblings before
overflow occurs in a node. Some database system such as
IBM DB2, Informix, Microsoft SQL Server
and SQLite

a) Longer the index size, less values can fit in a node, and
hence more height of tree.

support B+-tree.
The performance factors in B –tree and B+-tree are index
size and height. They affect performance in following way:

b) More height of tree, more disk access is needed.
c) More disk access results less performance.

3. BITMAP INDEX

For high cardinality columns in database previous indexing
techniques are more suitable. But if these techniques are
used for low cardinality columns in database then
performance of query processing will degrade, so Bitmap
index is used for low cardinality data. For example if a
database contains gender as an attribute then only two
values are possible-male and female. Moreover, this gives
better performance as compared to B-tree when queries use
combinations of AND/OR operators.

 Fig 3-BITMAP INDEX [7]

Bitmap is represented by bits and number of bits in bitmap
index is equal to number of records in a table. Fig 3
represents two bitmap indexes for gender, one for male and
second for female and whole table is accessed by L1, L2,
L3, L4 and L5 bitmaps. Bitmap index offers important
function for saving space and time as well as very good
query performance in a large data warehouse [6].
Bitmap index is used for selection in database for
example; a selection query like find women whose income
is in range 15000-20000. Bitmap index also counts the
number of tuples. For example how many
men have income level L4. In this, results are obtained from
bitmap index without even accessing
the relation. The problem with bitmap index is that it can be
used only when a relation column contains low distinct
value.

4. HASHING

One disadvantage of indexing techniques is that it should
access an index structure to find information, or should use
binary search and these lead to more I/O operations [4]. So,
hashing is used to avoid this. In this, a hash function is used
for locating; inserting and delete records and maps search
key value to buckets. Records are stored in buckets. These
buckets suffer from overflow so use additional buckets. In
hashing another problem is collision. There is various
methods to handle collisions i.e. open addressing and second
is chaining. In open addressing, linear probing and double
hashing can be used. The two types of hashing are-
a) Static hashing- In this type of hashing there is no change
in number of buckets. When a search key value is put, hash
function always computes same address [8]. So, static
hashing result more collisions.
b) Dynamic Hashing- In this type of hashing buckets vary at
dynamically. When there is overflow occurs then more
buckets can be added. Some techniques of dynamic hashing
are;

https://en.wikipedia.org/wiki/IBM_DB2�
https://en.wikipedia.org/wiki/Informix�
https://en.wikipedia.org/wiki/Microsoft_SQL_Server�
https://en.wikipedia.org/wiki/SQLite�

Monika Yadav, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1588-1592

© 2015-19, IJARCS All Rights Reserved 1590

i) Extendible hashing- Extendible hashing was described by
Ronald Fagin in [9]. All modern file system use this type of
hashing for example- Global File System, ZFS and the
SpadFS file system. It is used for binary representation of
hash values to access for directory with array size 2d

ii) Linear hashing- Linear hashing

and
d=global depth. When a disk block is full then it splits into
two blocks. Here local depth store with each bucket and this
tells about number of bits on which bucket contents are
based. The main advantages of extensible hashing are that
its performance does not degrade when file size grows and
space overhead is negligible. Minor disadvantage is that it
needs directory to be searched before access.

is a dynamic hash
algorithm 10. It was proposed by Witold Litwin in [], and
later popularized by Paul Larson [11]. In this type of
hashing only one bucket grow or shrink at a time. There are
two main advantages of linear hashing over extensible
hashing. One is it does not use a bucket directory and
second is when overflow occurs it is not always the
overflow bucket that is split. By creating a chain of pages in
overflow bucket, overflow can be handled. The hash
function in linear hashing change dynamically and at most
two hash functions use in linear hashing at a given instant of
time.

5. SPATIAL INDEXING

Techniques like B-tree and B+-tree, bitmap index all used
for only one dimensional data. So there is a need of special
indexing in which more than one dimensional data can be
indexed. In spatial indexing spatial data is indexed and this
data includes geographic data such as maps. The spatial
indexing data answers the following query-
a) Nearness query: - It searches query like finding all
hospitals that lie within a given distance. Nearest neighbor
query can also be searched.
b) Range query:- It searches range query i.e. find all
stationary shops within the geographical boundaries of given
town.
This type of indexing also handles queries of insertion and
union of regions. In spatial index there is a need of some
techniques so that one can access spatial data in less time
with accuracy. So some technique of spatial indexing are-

5.1 k-d TREE
k-d tree stores k-dimensional points. It is a space
partitioning data structure. It was proposed by John Louis
Bentley in [12]. In tree structure like binary tree each non
leaf nodes are divide into two children in one dimension.
Similarly k-d tree divides the space into two partitions,
that’s why it is also called

 Fig 4- K-D TREE INDEXING [13]

multidimensional BST. Each level of k-d tree divides the
space into two parts and this partitioning is performed along
one dimension at the node at the highest level of the tree,
along another dimension in nodes at the subsequent level
and so on. This stops when a node contain less than a given
maximum number of points [4].In Fig 4, k-d tree have
maximum number of points in leaf nodes is one and data is
stored at leaf nodes. The extension of k-d tree is k-d-B tree
which allow multiple child nodes for internal nodes. This
reduces the height of tree and these types of trees are mainly
used for secondary storage.

5.2 QUADTREE
Quad tree was proposed by Raphael and J.L.Bentley in
[14].The difference between k-d tree and quad tree is in
division of space. The root node contains the entire space in
quad tree and internal nodes divide the space into four equal
size quadrants. So each non leaf node has four child nodes.
The maximum points in a leaf node are fixed. In fig 5 the
maximum point is set to one.

 Fig 5-QUAD TREE [15]

K-d tree and quad trees are not balanced and they have
many empty leaves so there performance degrades.

5.3 R TREE
It was proposed by Antonin Guttmann in [16]. Here R
means rectangle. In R-tree space is divided into rectangles.
R-tree helps in store spatial objects i.e. restaurant locations
and it answers quickly to queries. In this type of tree nearby
objects are grouped and these groups represented by MBR
(minimum bounding rectangle) which helps in reduce the
coverage. It is also a balanced tree and all leaf nodes are
present at same level. Fig 6 represents R-tree index structure
by making minimum bounding rectangles. Let M be the
maximum number of entries fit in one node and m<=M/2 be
the minimum number of entries in a node then R-tree satisfy
following properties [16]-
a) Each leaf node index records are between m and M.
b) In each leaf node index is (I, tuple-identifier) where I is
smallest rectangle that spatially includes n-dimensional data
object.
c) Each non-leaf node children are between m and M unless
it is root.
d) In each non leaf index is (I, child-pointer) where I is
smallest rectangle that spatially includes the rectangles in
child node.
e) In R-tree root node contains at least two children unless it
is leaf.
f) All leaves in R-tree ate at same level.

https://en.wikipedia.org/wiki/Paul_Larson�

Monika Yadav, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1588-1592

© 2015-19, IJARCS All Rights Reserved 1591

 Fig 6-R-TREE INDEX STRUCTURE [17]

In spatial data two things are important –
a) Coverage- It is outlined as total space of all the rectangles
related to the nodes of that level. Minimum coverage helps
in reduces empty space.
b) Overlap- It is outlined as total space contained within two
or more nodes. Minimal overlap reduces search paths to the
leaf nodes.

R+-tree is a variation of Guttman’s R-tree(R+-tree) that
avoids overlapping rectangles in intermediate nodes of the
tree [

So an efficient R-tree needs both minimum coverage and
overlap. But in R-tree when a node falls in overlapping
region then more than one searching path may be possible
and the performance degrades. So there is a need of another
technique in which zero overlapping can be possible.

5.4 R+-TREE

18]. In this, the grouping of rectangles is different from
R-tree. The MBR does not intersect one another in R+-tree.
A single path is followed and saves the disk space when
compare to R-tree. Fig 7 shows that there is no overlapping
of rectangles.

 Fig 7-R+-TREE

R+-tree. But due to duplication of rectangles in R+-tree, its
structure sometimes can be large.

5.5 R*-TREE [19]
This type of tree also stores point and spatial data similar to
R-tree. R*-tree is very attractive due to-
a) It supports both point and spatial data at the same time.
b) Its implementation cost is slightly higher than R tree.
R*-Tree also reduces both overlap and coverage by two
ways:-
i) By using revised node split algorithm.
ii) Due to forced reinsertion at node overflow.
In R*- tree deletion and reinsertion of data provides more
appropriate location than its original and that’s why it
produce more well groups in nodes. But its complexity
increases due to reinsertion.

6. CONCLUSION

This paper presents various information retrieval techniques
by which any query can be searched and retrieved in less
time with accuracy. Many indexing schemes are discussed
in this paper and some of them are used in real world for
query optimization. Some index structure support point
query and one dimensional data and some of them support
range query and multi dimensional data. B-tree, B+-tree
supports point query but R-tree and its variants supports
range query and multidimensional data. R*-tree supports
both point and range query. Complexity can also be
optimized by changing the existing index structure like in
compact B+-tree. One can make new index structure by
combining good properties of any two index structure like k-
d-B tree combines properties of k-d tree and B-tree.

REFERENCES

1. wikipedia.org. [Online].

https://en.wikipedia.org/wiki/Information_retrieval
2. E.McCreight R. Bayer, "Organization and

Maintenance of Large Ordered Indexes," Springer-
Verlag, vol. 1, pp. 173-189, September 1972.

3. http://cis.stvincent.edu. [Online].
http://cis.stvincent.edu/html/tutorials/swd/btree/btree.h
tml

4. Henry F.Korth,S.Sudarshan A. Silberschatz, Database
System Concepts, 5th ed.: McGraw-Hill, 2006.

5. http://www.cburch.com. [Online].
http://www.cburch.com/cs/340/reading/btree/

6. Z.Zuping,H.I.Housien Z.Q.Abdulhadi, "Bitmap Index
as Effective Indexing for Low Cardinality Column in
Data Warehouse," International Journal of Computer
Applications, vol. 68, no. 24, pp. 38-42, April 2013.

7. https://mjromeo81.com. [Online].
https://mjromeo81.com/2017/01/28/introduction-to-
bitmap-indexes/

8. www.tutorialspoint.com. [Online].
https://www.tutorialspoint.com/dbms/dbms_hashing.ht
m

9. J. Nievergelt, N. Pippenger, H. Raymond Strong R.
Fagin, "Extensible Hashing- A Fast Access Method for
Dynamic Files," ACM Transactions on Database
Systems , vol. 4, no. 3, pp. 315-344, September 1979.

http://cis.stvincent.edu/html/tutorials/swd/btree/btree.html�
http://cis.stvincent.edu/html/tutorials/swd/btree/btree.html�
http://www.cburch.com/cs/340/reading/btree/�
https://mjromeo81.com/2017/01/28/introduction-to-bitmap-indexes/�
https://mjromeo81.com/2017/01/28/introduction-to-bitmap-indexes/�
https://www.tutorialspoint.com/dbms/dbms_hashing.htm�
https://www.tutorialspoint.com/dbms/dbms_hashing.htm�

Monika Yadav, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1588-1592

© 2015-19, IJARCS All Rights Reserved 1592

10. W. Litwin, "Linear Hashing : A New Tool For File
and Table Addressing," IEEE, pp. 212-223, 1980.

11. Wikipedia The Free Encyclopedia. [Online].
https://en.wikipedia.org/wiki/Linear_hashing

12. J. L. Bentley, "Multidimensional Binary Search Trees
Used for Associative Searching," ACM, vol. 18, no. 9,
pp. 509-517, September 1975.

13. http://groups.csail.mit.edu. [Online].
http://groups.csail.mit.edu/graphics/classes/6.838/S98/
meetings/m13/

14. J. L. Bentley R. A. Finkel, "Quad Trees : A Data
structure for Retrieval on Composite Keys," Springer-
Verlag, vol. 4, pp. 1-9, March 1974.

15. http://electronicimaging.spiedigitallibrary.org.
[Online].

http://electronicimaging.spiedigitallibrary.org/article.a
spx?articleid=1100865

16. A Guttman, "R-Trees:A Dynamic Index Structure For
Spatial Searching," ACM SIGMOD, pp. 47-57, June
1984.

17. https://en.wikipedia.org. [Online].
https://en.wikipedia.org/wiki/File:R-tree.jpg

18. N.Roussopoulos, C.Faloutsos T.Sellis, "The R+-
Tree:A Dynamic Index for Multi-Dimensional
Objects," in Proceeding of 13th International
Conference on Very Large Data Bases, 1987.

19. H.P. Kriegal, R. Schneider, B. Seeger N. Beckmann,
"The R*-tree: an efficient and robust access method
for points and rectangles ," Proc. ACM SIGMOD
International Conference on Management of Data, pp.
322-331, 1990.

https://en.wikipedia.org/wiki/Linear_hashing�
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/�
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/�
http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=1100865�
http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=1100865�
https://en.wikipedia.org/wiki/File:R-tree.jpg�

	REFERENCES

