
��������	�
����	��
�����������

������
����
�������
��������
���������
������� ��������!�������

�"!"�� #�$�$"��

��
��
%���&������
��'''��(
��������

© 2010, IJARCS All Rights Reserved 212

ISSN No. 0976-5697

Assessing Quality Issues in Component Based Software Development

Fernando L. F. Almeida*
Department of Informatics Engineering

Faculty of Engineering of University of Porto, FEUP

Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

almd@fe.up.pt

Catalin M. Calistru
Innovation and Development Centre

Higher Institute of Gaya, ISPGaya

Av. dos Descobrimentos 333, 4400-103 V.N.Gaia, Portugal

cmc@ispgaya.pt

Abstract: One of the most critical processes in component based software development (CBSD) is the choice of suitable commercial off-the-

shelf components (COTS) that meet the user requirements. An important step in the component selection process is the evaluation of

components using quality models. This paper presents the most relevant of current quality models proposed in the literature. A comparative

analysis among them was performed and some issues related to CBSD were identified. Additionally, the main benefits and limitations associated

with each quality model were highlighted and explored.

Keywords: component based software engineering (CBSE); commercial-off-the-shelf (COTS); software quality; software integration; quality

metrics

I. INTRODUCTION

Component based software development (CBSD) model is
based on the idea to develop software systems by choosing
appropriate off-the-shelf components and then to assemble
them with a well-defined software architecture. Because the
new software development paradigm is very different from the
traditional approach, quality assurance (QA) for component-
based software development is a new and interesting topic in
the software engineering community [1].

The objective of CBSD is to develop large systems,
incorporating previously developed or existing components,
thus cutting down on development time and costs. It can also
be used to reduce maintenance associated with the upgrading of
large systems. It is assumed that common parts (be it classes or
functions) in a software application only need to be written
once and re-used rather than being re-written every time a new
application is developed.

CBSD embodies the “buy, but don’t build” philosophy. Due
to the extensive use of components, the CBSD process is quite
different from the traditional waterfall approach. The waterfall
approach considers that the software development method is
linear and sequential [2]. Once a phase of development, the
development proceeds to the next phase and there is no turning
back. Instead, CBSD not only requires focus on system
specification and development, but also requires additional
consideration for overall system context, individual
components properties and component acquisition and
integration process.

The CBSD generally includes the following fundamental
software development principles:

• Independent software development – large software
systems are necessarily assembled from components
developed by different people. To facilitate
independent development, it is essential to decouple
developers and users of components through an
abstract and implementation-neutral interface
specification;

• Reusability – while some parts of a large system will
necessarily be used for specific purposes, it is essential

to design and assemble pre-existing components in
developing new components;

• Software quality – a component or system needs to be
shown to have desired behavior, either through logical
reasoning, tracing, and/or testing. Besides that, the
quality assurance approach must be modular to be
scalable;

• Maintainability – a software system shall be
understandable and easy to evolve.

This work presents a survey of the most relevant quality
models for commercial off-the-shelf (COTS) components.
Further, this work extracts the major benefits and limitations of
each model and a critical comparison among them is made.
Section II introduces the CBSE methodology. Section III
presents the major benefits and difficulties of CBSE approach.
Section IV analysis the requirements of a quality model for
software-based components. Section V presents the most
relevant quality models for COTS components founded in
literature. Finally, section VI compares the various quality
models presented in section before and section VII draws
conclusions.

II. THE CBSE CONCEPT

The Component based software engineering (CBSE) is a
branch of software engineering which is concerned with
development of software systems based on existing in-house
and/or COTS components. Reusing previously developed
components in developing software has many benefits, mainly
in terms of reduced costs and time to market [3]. Further, since
a component is repeatedly used, it undergoes repeated testing
when used in different systems and operating environments.
This will increase the quality of a stand-alone component as
well as the systems where it is being used. This can greatly help
in materializing the benefits of standard domains. A standard
domain can always provide well-defined standard components,
which can be easily reused in any case. Therefore, component
technology heavily supports code reuse, which was previously
not the case.

CBSE approaches software development in a way, which is
very different from other previous approaches such as

Fernando L. F. Almeida et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,212-218

© 2010, IJARCS All Rights Reserved 213

procedural and object-oriented approaches. In these
approaches, often, the same team is responsible for developing
the classes and procedures that develops a software system.
This approach is not very efficient in developing high quality
large and complex systems in minimum time [3]. Further,
procedural or object-oriented approaches for these systems
often may lead to slippage of time schedule, and consequently,
failure of projects. CBSE is supposed to be an effective
approach for big and complex systems. Peculiarity with CBSE
is that it approaches software development in a way which is
similar to that adopted by other popular engineering streams for
manufacturing products [4]. In fact, all of them develop
products from highly reusable standardized smaller units or
parts.

III. BENEFITS AND DIFFICULTIES

A. Major Benefits

The obvious benefit in the use of CBSE approach is the
time-to-market, thus lowering the cost of developing the
software. Shorter development cycles will save time as to
developing a system from scratch. Developing software
systems using CBSE offer many advantages, namely:

• Developing costs are reduced since existing
components are used to develop the system;

• Reliability is increased since the components have
previously been tested in various contexts;

• Time to market is reduced since the components used
already exist;

• Maintenance costs are also reduced since the followed
development process is well standardized;

• Efficiency and flexibility is improved due to the fact
that components can easier be added or replaced.

The figure 1 illustrates the key goals and advantages of
CBSE approach.

Figure 1. Key goals and advantages in CBSE

The main tangible benefits are shorter development life
cycle and reduction in IT costs. There are also some intangible
benefits like IT adaptability, improved business processes and
benefits from external products.

B. Major Difficulties

The CBSE approach typically requires the establishment of
an initial component-based architecture, where component
interactions are determined for each system interface operation
and component object architecture constraints and interfaces
are defined as needed.

In the following is a brief overview of a non-exhaustive list
of problems that may be faced by component users:

• Ensuring version compatibility – versions of
components may change during the course of evolution

of the target application. Therefore, the management of
version numbers for the applications is more complex
because of the availability of multiple component
versions;

• Understanding components – program understanding is
important for software engineering activities such as
software reuse and maintenance. Components have
important aspects that need to be understood. UML
models showing package and deployment diagrams can
be used for this task;

• Selecting components – based on the functional, non-
functional and business requirements of an application,
developers may need to select a component from a set
of available components. The component needs not
only to meet the functional requirements, but also
needs to possess the appropriate mix of quality
attributes, and have no adverse impact on the quality of
the target application;

• Verifying and validating component assemblies – as
with any software development process, verification
and validation are important activities in CBSD. Since
components are mostly black-box, validation of the
component assembly cannot make use of code-based
test generation techniques. They need to rely on the
specifications, which may be available in various
degrees of detail, or as part of the API (Application
Programming Interface);

• Performing regression testing on component software –
regression testing is a costly process and often testers
use minimization techniques to reduce the amount of
re-testing. However, a lack of relevant testing
information in components makes it difficult to
effectively determine the test cases that should be
rerun. A metadata approach with the description of
components can be used to address the problem of test
case selection [5];

• Maintaining applications using software components –
software maintenance may be necessitated because of
changes in components (versions, availability of
superior components, etc), or changes in the
requirements of the application and a host of other
reasons. The process of maintenance may require the
development of new wrappers for existing components,
or the procurement of new components.

IV. THE QUALITY MODEL FOR SOFTWARE COMPONENTS

A. The notion of quality in software development

According to the IEEE Standard Glossary of Software
Engineering Terminology, software quality is defined as “the
degree to which a system, system component, or process meets
specified requirements” and also as “the degree to which a
system, system component, or process meets customer or used
needs or expectations”. In fact, software quality can either refer
to the software product quality or the software process quality.
Examples used for the product and process quality are the
CMM-I (Capability Maturity Model-Integrated) and ISO
standards.

According to Ljerka Dukic and Jorgen Boegh [6] software
quality model is defined as a set of characteristics and
relationships between them that provide the basis for specifying
quality requirements and evaluating quality. As a consequence,
a software quality model is a good tool to evaluate the quality
of a software product [7].

Fernando L. F. Almeida et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,212-218

© 2010, IJARCS All Rights Reserved 214

A more concise definition of a quality model is presented
by Donald FireSmith [8], which defines a quality model as a
hierarchical model (i.e. a layered collection of related
abstractions and simplifications) for formalizing the quality of
a system in terms of its factors, sub-factors, criteria and
measures as described below:

• Quality characteristics – high level characteristics of a
system that capture major aspects of its quality (e.g.,
functionality, performance or reliability);

• Quality sub-characteristics – major components of the
quality factors mentioned above that capture a
subordinate aspect of the quality of the systems (e.g.,
accuracy or expansibility);

• Quality attributes – specific descriptions of a system
that provide evidence for or against the existence of a
specific quality factor or sub-factor;

• Quality measures – make quality attributes measurable,
objective and unambiguous.

Software Product quality assessment can either be white
box or black box assessment. White box assessment is based
only on the source code, but source code will not be available
for certain categories of software components like COTS
components and reusable COTS components. On the other
side, black box quality assessment is based on reliability testing
and the evaluation of externally viable characteristics that can
be done using quality models that can also be applied to all
kinds of software components. Since, most software
components are black boxes, quality models are therefore
needed to evaluate the quality of software components.

B. Influence of quality in software components

Several factors influence the quality of component-based
applications. Benchman et al. state that software quality
depends on the quality of its components and on the component
framework used [9]. Woodman et al. add that the development
process and the maturity of an organization also influence the
quality of component-based software products. In software
systems built by assembling components, it is easy to perceive
that the quality of its components, directly or indirectly,
influences the quality of the final software.

The quality of the final achieved software is highly
influenced by the use of CBD approach. Each component will
have its own quality attribute profile, but when interfaced and
used together with other components, the resulting composition
may show a different quality attribute profile altogether [10]. A
large range of components, which perform the same function,
are available from different vendors. This makes it very
difficult for a developer to decide which component to use and
which to discard, based on the quality attributes of available
competing components. Quality of an individual component is
important but there is no guarantee that integration of
components with highly quality attributes will lead to a
software product with overall high quality attributes. When
multiple components are integrated, it is very difficult to reason
about the overall quality of the final product and developers
require some metric that helps them in evaluating and choosing
components in such a manner that the final product is of high
quality.

Several authors such as Sergey Berezin and Edmund Clarke
consider that the properties of a system are influenced more by
the interaction of its components than by the properties of a
single component [11]. Crnkovic et al. proposed the prediction
theory. This theory consists of predicting the properties of the
assemblies of components before they are acquired and used.
This theory is based on assumptions about the environment in
which the assembly will run and on information about the

components involved. The research model for the prediction
theory suggests that component properties, directly or
indirectly, involved in any research need to be defined along
with the means that may be established and measured [12].

V. PROPOSED QUALITY MODELS

All the existing software quality models already proposed
are based on the ISO 9126 specification and are extensions or
modifications of the model customized to suit the software
component domain.

ISO 9126 provides the definition of the characteristics and
associated quality evaluation process to be used when
specifying the requirements for and evaluating the quality of
software products throughout their life cycle. It is important to
refer that this standard does not provide subcharacteristics and
metrics, nor the method for measurement, rating and
assessment. ISO 9126 sets out the following six quality
characteristics, which are intended to be exhaustive [13]:

• Functionality is the set of attributes that bear on the
existence of a set of functions and their specified
properties. The functions are those that satisfy stated or
implied needs;

• Reliability is the set of attributes that bear on the
capability of software to maintain its level of
performance under stated conditions for a stated period
of time;

• Usability is the set of attributed that bear on the effort
needed for use, and on the individual assessment of
such use, by a stated or implied set of users;

• Efficiency is the set of attributes that bear on the
relationship between the level of performance of the
software and the amount of resources used under stated
conditions;

• Maintainability is the set of attributes that bear on the
effort needed to make specified modifications;

• Portability is the set of attributes that bear on the ability
of software to be transferred from one environment.

An analysis and description of different proposed quality
models will be made in the next sections.

A. FURPS Quality Model

The FURPS model originally presented by Robert Grady in
1992 is structured in basically the same manner as the ISO
9126 specification [14]. Then, it had been extended by IBM
Relational Software into FURPS+, where the “+” indicates
such requirements as design constraints, implementation
requirements, interface requirements and physical
requirements.

The FURPS supports the following characteristics depicted
in figure 2.

Figure 2. Characteristics of FURPS quality model

Fernando L. F. Almeida et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,212-218

© 2010, IJARCS All Rights Reserved 215

FURPS stands for:

• Functionality – which may include feature sets,
capabilities and security;

• Usability – which may include human factors,
aesthetics, consistency in the user interface, online and
context sensitive help, wizards and agents, user
documentation, and training materials;

• Reliability – which may include frequency and severity
of failure, recoverability, predictability, accuracy, and
mean time between failure (MTBF);

• Performance – imposes conditions on functional
requirements such as speed, efficiency, availability,
accuracy, throughput, response time, recovery time,
and resource usage;

• Supportability – which may include testability,
extensibility, adaptability, compatibility and instability.

The FURPS categories are two different types: Functional
(F) and Non-functional (URPS). These categories can be used
as both product requirements as well as in the assessment of
product quality.

B. Dromey Quality Model

Dromey proposed a working framework for building and
using a practical quality model to evaluate requirement
determination, design and implementation phases [16]. Dromey
points out that high level quality attributes, such as
maintainability, functionality and reliability, cannot be built
into the system. The alternative way to input quality into
software is by identifying a set of properties and build them up
consistently, harmoniously and fully to provide high level
quality. Additionally, links must be established between
tangible product properties and intangible quality attributes.

Five steps for quality model were constructed and refined.
Dromey includes high-level quality attributes such as:
functionality, reliability, usability, portability, reusability and
process-mature. In comparing to ISO 9126, additional
characteristics like process maturity and reusability are
noticeable. Subattributes associated with reusability are
machine-independent, separable and configurable; while
process maturity includes client-oriented, well-defined, assured
and effective attributes. Process maturity is an attribute which
has not been considered in the previous models.

C. Bertoa’s Quality Model

This model was proposed by F. Bertoa and Antonio
Valecillo in 2002. The motivation behind this model was to
make an attempt to define the attribute that can be described by
COTS vendors (no matter whether they are external or internal
providers) as part of the information provided by them. These
attributes were supposed to be an aid in the COTS components
quality assessment and selection procedure carried out by
software designers and developers.

The ISO 9126 quality model was refined and customized to
accommodate particular characteristics of COTS components.
Different kinds of quality characteristics that could be applied
to COTS components were identified. The characteristics were
also discriminated into local characteristics (for individual
components), global characteristics (at the software architecture
level), runtime characteristics and product characteristics.

An overview of the Bertoa’s model is depicted in table I.

Table I. Vision of Bertoa’s model [17]

Characteristics Sub-characteristics

Functionality Accuracy, security, suitability,
interoperability, compliance and
compatibility

Reliability Recoverability and maturity

Usability Learnability, understandability,
operability and complexity

Efficiency Time behavior and resource behavior

Maintainability Changeability and testability

The metrics used in this model are:

• Presence – identifies whether an attribute is present in a
component;

• Time – this metric is used to measure time intervals;

• Level – this metric is used to indicate the degree of
effort or ability;

• Ratio – this metric is used to measure percentages.
This model encompasses all the characteristics already

presented in the ISO 9126 model. This means that not many
component specific changes were made to the original model
except the addition of attributes like complexity and
compatibility.

D. Ali, Gafoor & Paul Quality Model

Ali, Gafoor & Paul proposed in 2003 a quality model for
evaluating COTS components that support a standard set of
quality characteristics. It consists in a new approach using a set
of 13 system-level metrics, which are divided into three
categories: Management, Requirement and Quality.

An overview of the Ali’s metrics is given in table II.

Table II. Vision of Ali’s metrics [18]

Category Metric

Management Cost, time-to-market, software
engineering environment and system
resource utilization

Requirements Requirements conformance and
requirements stability

Quality Adaptability, complexity of interfaces
and integration, integration test
coverage, end-to-end test coverage,
fault profiles, reliability and customer
satisfaction.

There are three metrics that deserve a special attention due
to their level of novelty. The Software Engineering
Environment is a metric that intends to measure the capability
of producing high quality software. The End-to-End (E2E) Test
Coverage complements the integration test coverage metric and
it is responsible to return the fraction of the system that has
undergone satisfactory E2E testing. Finally, Customer
Satisfaction gives the degree to which the software has met
customer expectations.

These metrics helps managers select between appropriate
components from a repository of software products and aid
them in deciding between using COTS components or
developing new components.

E. Alvaro’s Quality Model

The next component quality model was proposed by A.
Alvaro, E. Santana and S. Meira in 2005 [17]. The purpose of
this model is to determine which quality characteristics should
be considered for the evaluation of software components. The
proposed quality model is also part of a Software Component
Certification Framework that was being investigated with the
objective of acquiring quality in software components that will
be stored in repository systems.

The model follows the ISO 9126 standard like the previous
models. However, some changes have been made in order to
develop a consistent model to evaluate software components. A
few new sub characteristics have been added and existing sub
characteristics have been removed.

The added sub characteristics include self contained,
configurability, scalability and reusability. Self contained is an
intrinsic property of a component and must be analyzed.
Configurability becomes essential for the developer to analyze

Fernando L. F. Almeida et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,212-218

© 2010, IJARCS All Rights Reserved 216

if the component can be easily configured. Scalability is
relevant in order to express the ability of the component to
support major data volumes. Reusability is important for the
reason that software factories have adopted component based
approaches on the premise of reuse.

On the other side, the maintainability characteristic and
analyzability sub characteristic has been removed from the ISO
9126 model. Another change is that the installability sub
characteristic has been changed to deployability.

The Alvaro’s model has also added another high level
characteristic called business with the following sub
characteristics: development time, cost, time to market,
targeted market and affordability.

F. Adnan Rawesdah’s Quality Model

Adnan Raweshdah and Bassem Matalkah build in 2006 a
new model that supports standard set of quality characteristics
suitable for evaluating COTS components along with newly
defined sets of sub characteristics associated with them [19].
The model also attempts to match the appropriate type of
stakeholder with the corresponding quality characteristic,
which is a feature that is missing in the already existing models
described above.

An outline of Adnan Rawesdah’s model is given in table
III.

Table III. Vision of Adnan Rawesdah’s model [17]

Characteristics Sub-characteristics

Functionality Accuracy, security, suitability,
interoperability, compliance,
compatibility and self-contained

Reliability Recoverability and maturity

Usability Learnability, understandability, and
operability

Efficiency Time behavior, resource behavior and
scalability

Maintainability Changeability and testability

Manageability Quality management

The sub characteristics fault tolerance, configurability,
scalability and reusability have been removed. However, a new
characteristic manageability has been added. The meaning of
manageability is concerned with developing and refining
estimates of effort and deadlines for the project as a whole. A
new sub characteristic Quality Management which indicated
the people within the organization, who are constantly finding
out ways to improve quality of operation, product, budgets,
schedule and services offered by the firm is also added.

The model identifies the following stakeholders:

• End user – interacts with the system;

• Analyst – produces the business model;

• QA Officer – tests and validated the product;

• Project Manager – constructs and manages the process.

G. Sharma Quality Model

Sharma et al. proposed in 2007 a quality model based on
ISO 9126 that defines the characteristics and sub-characteristics
of the components and proposes to add some more sub-
characteristics to it, which may be relevant in the CBSD
context. The most innovative part of this model is that it can
also be used to estimate the effort required to achieve the
required value of any characteristic.

A particular attention is given for the evaluation of
reusability metric. The reusability can be measured directly
using the Reuse Leverage for Productivity (RL) metric, as it
follows [20]:

 (1)

This notion of reuse leverage can only be measured after
the introduction of reuse. It is desirable to be able to predict the
effect of reuse, which can be obtained either to work initially
on some pilot projects or to work with estimated or with
industry benchmarks.

Reusability can also be measured indirectly. Complexity,
adaptability and observability can be considered as a good
measure of reusability indirectly. The work conducted by
Sharma et al. considers two approaches to measure the
reusability of a component. The first is a metric that measures
how a component has reusability and may be used at design
phase in a component development process. This metric,
Component Reusability (CR) is calculated by dividing the sum
of interface methods providing commonality functions in a
domain to the sum of total interface methods. The second
approach is a metric called Component Reusability Level
(CRL) to measure particular component’s reuse level per
application in a component based software development. This
metric is again divided into two sub-metrics. First is the
CRLLOC, which is measured by using lines of code, and is
expressed as percentage as given as [20]:

(2)

In the equation (2), Reuse(c) is the lines of code reused
component in an application and Size(c) is the total lines of
code delivered in the application.

The second sub-metric is CRLFunc, which is measured by
dividing functionality that a component supports into required
functionality in an application. This metric gives an indication
of higher reusability if a large number of functions used in a
component.

H. Jasmine & Vasantha Quality Model

Jasmine & Vasantha proposed in 2008 a Defect Removal
Efficency quality metric that provides benefits at both projects
and process levels [10]. They redefined the basic definition of
defect removal efficiency in terms of the phases involved in
reuse-based development and proposed a systematic approach
in the defect removal process.

The model introduced a metric to reduce defect injection
and boost defect removal efficiency. Defect removal efficiency
(DRE) metric quantifies the excellence of the product by
computing the number of defects before release of the product
to the total number of latent defects. DRE is defined as the
number of defects removed during development phase divided
by the total number of latent defects. DRE depends upon time
and method used to remove defects. Anyway, it is always more
lucrative for defects to be prevented rather than detected and
eliminated.

Certain amount of defects can be prevented through error
removal techniques like educating development team through
training, by use of formal specifications and formal
verifications. It can also be prevented with use of tools,
technologies, process and standards. Several tools are available
right from requirements phase to maintenance phase to
automate the entire development process. By inculcating
quality standards in software development, defects can be
prevented to a maximum extent.

VI. EVALUATION OF QUALITY MODELS

There are a considerable number of quality models in
software engineering literature, each one of these quality
models consists of a number of quality characteristics (or
factors, as called in some models). These quality characteristics

Fernando L. F. Almeida et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,212-218

© 2010, IJARCS All Rights Reserved 217

could be used to reflect the quality of the software product from
the view of that characteristic. Selecting which one of the
quality models to use is a real challenge. In order to help this
choice the quality models presented in section above are
compared in table IV.

Table IV. Main benefits and limitations

Model Benefits Limitations

FURPS Easy to use
Well structured

Portability is not
considered

Dromey’s Considers software quality
attributes
Includes the portability
dimension

Efficiency is not
considered

Bertoa’s Addition of attributes such
as complexity and
compatibility

Attributes such as
interfaces, versions and
reusability are not
considered

Ali’s Introduction of 13 system-
level metrics

Lack of information about
how to measure and
quantify these metrics

Alvaro’s Addition of attributes such
as self contained,
configurability and
scalability
Redefinition of usability
concept

Reusability and testability
attributes are not
sufficiently described

Adnan’s Addition of manageability
attribute

Lack of innovative
concepts
Some important sub
characteristics for COTS
components were
eliminated

Sharma’s Introduction of new
metrics for the evaluation
of reusability

It is not a full quality
model

Jasmine’s Addition of a new quality
metrics called defect
removal efficiency

It is not a full quality
model

FURPS is the oldest quality model that can be used to
assess the COTS quality components. It is easy to use and well
structured in two categories of requirements: functional
requirements and non-functional requirements. The main
disadvantage of the FURPS model is it does not take into
account the portability of the software product, which is an
important requirement of the COTS components.

Dromey’s model presented the innovation to connect
software product quality with software quality attributes. The
model introduced software product quality parameters such as
correctness, internal, contextual and descriptive. Besides that,
the portability as a software quality attribute was added
comparing to the FURPS model. The disadvantage of this
model is that efficiency of software is not considered for
determining the quality of software.

Bertoa’s model encompasses all the characteristics already
present in the Dromey’s and ISO 9126 models. This means that
not many component specific changes were made to the
original model except the addition of attributes like complexity
and compatibility. The mains disadvantages of this model are
that it does not discuss about significant component
characteristics like interfaces, versions and reusability.
However this was an important step taken in the direction of
designing quality model especially suitable for components and
the later models proposed are all based on Bertoa’s model.

Ali, Gafoor & Paul model proposed a new approach using a
set of 13 system-level metrics such as system resource
utilization, requirements stability and end-to-end test coverage
organized in three categories (management, requirements and
quality). These metrics helps managers choose between
appropriate components from a repository of software products
and aid them in deciding between using COTS components or

developing new components. This model, however, does not
say much about how these metrics are measured and quantified.

Alvaro’s model can be considered a huge step forward,
even though it is similar to Bertoa’s model, but it added a
number of components specific quality characteristics like self
contained, configurability, and scalability. Another advantage
in this model is that it has redefined usability in the component
context, which means its ability to be used by the application
developer when constructing a software product or system with
it. However, this model has a few drawbacks. The first is that
reusability has been recognized only as a quality attribute and
not as a quality factor. According to Hopkins Jon reusability,
by itself, should be placed as quality factor together with its
own set of quality sub characteristics, attributes and measures
[21]. Additionally, not enough importance is given to
testability, which again is included only as a quality sub
characteristic. Typically, when a COTS component is
purchased from a vendor, it is basically a black box. The buyer
usually receives an executable version of the component and a
description of its functionality. The testers have to make use of
this little information to test if the component is compatible and
working. Hence, a higher testability degree increases the
chance of discovering errors, which will increase the quality of
the component. Therefore, the inclusion of testability as a high
level quality characteristic would be useful.

Adnan Raweshdah’s model doesn’t bring substantial
improvements. The sub characteristics fault tolerance,
configurability, scalability and reusability were eliminated from
Alvaro’s model in order to simplify the model and increase the
industrial adoption of COTS components quality models.
However, a new main characteristic level called Manageability,
which refers to quality management has been introduced. Some
critiques can be formulated to this model particularly in terms
of innovation, relevance and quality measures. First, the
eliminated sub characteristics are very significant to COTS
components. Besides that, the new Manageability characteristic
is more process specific rather than product specific and quality
attributes. Additionally, the authors have also missed to
describe the quality attributes and measures of their quality
model.

The Sharma and Jasmine models can’t be seen as complete
quality models. They just add some metrics to help managers
selecting the best appropriate COTS components. Sharma
model made a significant effort for the evaluation of
reusability, which is a fundamental characteristic of a COST
component. On the other side, Jasmine model proposed a
Defect Removal Efficiency measure, which is a quality metric
that provides benefits at both project and process levels.

VII. CONCLUSIONS

The growing use of commercial products in large systems
makes evaluation and selection of appropriate products an
increasingly essential activity. However, many organizations
struggle in their attempts to select an adequate product for use
in Component-Based Software Development (CBSD), which is
being used in a wide variety of application areas and the correct
operations of the components are often critical for business
success. In this way, assessment and evaluation of software
components has become a compulsory and crucial part of any
CBSD lifecycle. The software components quality evaluation
has become an essential activity in order to bring reliability in
(re)using software components.

In this sense, a survey of various quality models for COTS
development was conducted. All the proposed models follow
the ISO 9126 quality model framework with a few corrections
and adjustments made to suit the software component domain.

Fernando L. F. Almeida et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,212-218

© 2010, IJARCS All Rights Reserved 218

A comparative analysis among them was also performed and
some issues related to CBSD were identified. Currently the
most widely cited and used quality models are the Bertoa’s and
Alvaro’s model, which are enough complete to evaluate the
major quality aspects of CBSD methodology. Additionally,
more recent quality models proposed by Sharma and Jasmine
have a big potentially to be adopted. They bring new metrics in
terms of reusability and defect removal efficiency that provides
important benefits at both project and process levels.

Future work in the quality models of CBSD research could
include the impact of lack information in the measurement of a
component quality. It is common not to be possible to measure
some of the attributes due to a number of reasons, essentially
because not all the information is provided by the component
vendors. Besides that, it would be interesting to suggest a
comprehensive model specific for COTS components with a
minimum set of attributes. Additionally, with regard to the
quality attributes of components, it is very important to interact
and work with independent parties and organizations that help
evaluating them, in order to obtain trustworthy measures. This
would greatly simplify, or eliminate, most of the tests that need
to be performed again by the components acquirer, and that
heavily reduce the potential benefits of using components.

VIII. REFERENCES

[1] I. Kaur, P. Sandhu, H. Singh and V. Saini, “Analytical
Study of Component Based Software Engineering”,
World Academy of Science, Engineering and Technology,
vol. 50, 2009, pp. 437-442.

[2] X. Zhang, T. Hu, H. Dai and X. Li, “Software
development methodlogies, trends and implications”,
Proc. of the Southern Association for Information
Systems Conference, 2010, pp. 173-178,
doi:10.3923/itj.2010.1747.1753.

[3] S. Pandeya and A. Tripathi, “Testing component-based
dostware: what it has to do with design and component
selection”, Journal of Software Engineering and
Applications, vol. 1, 2011, pp. 37-47.

[4] A. Dogru and M. Tanik, “A process model for
component-oriented software engineering”, IEEE
Software, vol. 20, issue 2, 2003, pp.34 -41,
doi:10.1109/MS.2003.1184164.

[5] M. Harrold, A. Orso, D. Rosenblum, G. Rothemel, M.
Soffa and H. Do, “Using component metadata to support
regression testing of component-based software”, Proc. of
the International Conference on Software Maintencance,
2001, pp. 716-725.

[6] L. Dukic and J. Boegh, “COTS Software Quality
Evaluation”, Proc. of International Conference on COTS
Based Software Systems, 2003, pp.72-80, doi:10.1007/3-
540-36465-X_7.

[7] K. Sacha, “Evaluation of Software Quality”, Proc. of
Conference on Software Engineering: Evolution and
Emerging Technologies”, 2005, pp. 381-388.

[8] D. FireSmith, “Archieving quality requiremnts with
reused software components: challenges to successful
reuse”, Proc. of Second International Workshop on
Models and Processes for the Evaluation of off-the-shelf
Components (MPEC’05), 2005, pp. 16-29.

[9] O. Preiss and A. Wegmann, “A systems perspective on
the quality description of software components”, Proc. of
the 6th World Multiconference on Systemics Cybernetics
and Informatics, vol. 7, 2002, pp. 250-255.

[10] J. Pande, R. Bisht, D. Pant and V. Pathak, “On some
quality issues of component selection in CBSD”, Journal
of Software Engineering & Applications, vol. 3, 2010, pp.
556-560, doi:10.4236/jsea.2010.36064.

[11] S. Berezin, S. Campos and E. Clarke, “Compositional
Reasoning in Model Checking”, Lecture Notes in
Computer Science, vol. 1536, 1998, pp. 81-102.

[12] I. Crnkovic, H. Schmidt, J. Stafford and K. Wallnau,
“Anatomy of a research project in predictable assembly”,
Proc. of the 5th ICSE Workshop on Component-based
Software Engineering, 2002, pp. 74-79.

[13] F. Losavio, L Chirinos, N. Lévy and A. Ramdane-Cherif,
“Quality Characteristics for Software Architecture”,
Journal of Object Technology, vol. 2, no. 2, 2003, pp.
133-150.

[14] P. Berander, L. Damm, J. Eriksson, T. Gorschek and D.
Milicic. Software Quality Attributes and Trade-offs, 1rd
ed., Blekinge Institute of Technology, Ronneby: Sweden,
2005, pp. 3-19.

[15] R. Al-Qutaish, “Quality models in software engineeting
literature: an analytical and comparative study”, Journal
of American Science, vol. 6, no. 3, 2010, pp. 166-175.

[16] J. Yahaya, A. Deraman and A. Hamdan, “Software
Quality from Behavioural and Human Perspectives”,
International Journal of Computer Science and Network
Security, vol. 8, no. 8, 2008, pp. 53-63.

[17] S. Kalaimagal and R. Srinivasan, “A Retrospective on
Software Component Quality Models”, ACM SIGSOFT
Software Engineering Notes, vol. 33, no. 6, 2008, pp. 2-8.

[18] S. Ali, A. Ghafoor and R. Paul, “Metrics-Guided Quality
Management for Component-Based Software Systems”,
Proc. of the 25th Annual International Computer Software
and Applications Conference (COMPSAC’01), 2001, pp.
303-308, doi:10.1.1.11.8759.

[19] A. Raweshdah and B. Matalhak, “A New Software
Quality Model for Evaluating COTS Components”,
Journal of Computer Science, vol. 2, no. 4, 2006, pp. 373-
381.

[20] A. Sharma, R. Kumar and P. Grover, “Managing
Component-Based Systems with Reusable Components”,
International Journal of Computer Science and Security,
vol. 1, issue 2, 2007, pp. 52-57.

[21] J. Hopkins, “Component Primer”, Communications of the
ACM, vol. 43, no. 10, 2000, pp. 27-30,
doi:10.1145/352183.352198.

