
Volume 1, No. 2, July‐August 2010

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserves 150

ISSN No. 0976‐5697

 High Performance Mobile Checkpointing Algorithm

Surender Kumar*
Dept. of Information Technology (IT),

Haryana College of Tech. & Mgmt.(HCTM)
Ambala Road, Kaithal(HRY), INDIA

ssjangra20@rediffmail.com

R.K. Chauhan
Dept. of Computer Sc. & App.(DCA)

Kurukshetra University,
Kurukshetra(HRY), INDIA

Parveen Kumar

Deptt. of Computer Sc. & Engg.
Meerut Institute of Engg. & Tech.(MIET)

Meerut(U.P), INDIA

Abstract: A mobile computing system consists of mobile and stationary nodes, connected to each other by communication network. This system
raises several requirement and restrictions, such as limited battery life, mobility, disconnection of hosts and lack of stable storage not taken into
account by conventional distributed systems. Our checkpointing algorithm forces a minimum number of processes to take checkpoint and re-
duces the delay incurred in determining the consistent global state for mobile systems in the comparison of the traditional coordinated check-
pointing algorithms. By reducing the checkpoint cost like searching, saving checkpoints, and transmitting data through wireless link we can deal
with different checkpointing issues for mobile systems.

Keywords: Mobile Systems, Coordinated checkpointing, Consistent Checkpoints, Global Snapshot, , Non-blocking, orphan message.

I. INTRODUCTION

A mobile computing system is a distributed system
where some of the nodes are mobile computers (Mobile
Hosts (MHs)) [9]. As time passes mobile computers loca-
tion gets change. To communicate with MHs, mobile sup-
port stations (MSSs) are added. An MSS communicate with
other MSS by wired networks and with MHs with wireless
network. Each of saved state is called snapshot (check-
point). All the processes in the system take their checkpoints
periodically.

The checkpointing techniques do not require user inter-
action and can be classified into following categories: (a)
Uncoordinated checkpointing (b) Coordinated checkpoint-
ing (c) Quasi-Synchronous (d) Message – Login based
checkpointing [14]. In this paper we concentrate on coordi-
nated checkpointing technique which maintains a consistent
snapshot of system all the times. A consistent global snap-
shot indicates set of N local snapshots (checkpoints) one
from each process forming a consistent system state which
can be used to restart process execution upon a failure.

It is desirable to minimize the amount of lost work by
restoring the system to most recent consistent global check-
point. A good snapshot collection algorithm should be Non-
Blocking i.e. which does not force the nodes in the system
to stop their computations during snapshot collection. An
efficient algorithm keeps minimum effort required for col-
lecting a consistent snapshot to a minimum. The snapshot
collection algorithm by Chandy and Lamport forces every
node to take its local snapshots but the computation is al-
lowed to continue while the global snapshot is being col-
lected [1]. In Koo and Toueg’s algorithm all the nodes are
not forced to take their local snapshots [7]. However, the

underlying computation is suspended during snapshot col-
lection.

We propose a new coordinated checkpoint algorithm
which is non- blocking and efficient that forces a minimal
set of nodes to take their snapshot and underlying computa-
tion is not suspended during snapshot collection.

The rest of the paper is organized as follows: Section 2
presents the system model. Section 3 presents the basic idea,
minimal dependency information at each node and the node
mobility management of our algorithm. Section 4 presents a
Non-Blocking Coordinated checkpoint algorithm with data
structure used and an example describing our algorithm.
Section 5 presents the related work on which our algorithm
is based. Finally, Section 6 presents conclusion.

II. SYSTEM MODEL

A message passing system consists of N fixed number of
nodes that communicate each other only through messages.
Some of the nodes may change their location with time.
They are referred to as mobile hosts or MHs [9]. Static
Nodes are referred to as mobile support stations or MSSs
are connected to each other by a static network [Fig. 1]. An
MH can be directly connected to at most one MSS at any
given time and can communicate with other MHs and MSSs
only through the MSS to which it is directly connected. The
system does not have any shared memory or a global clock.
Hence all the communication and synchronization takes
place through messages.

mailto:ssjangra20@rediffmail.com

Surendra Kumar et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 150-155

The messages generated by underlying distributed appli-

cation will be referred to as computation messages. Mes-
sages generated by the nodes to advance checkpoints, han-
dle failures and for recovery will be referred to as system
messages. In this paper the horizontal lines extending to-
wards right hand side represent the execution of each proc-
ess (MH) and arrows between them represent the messages.
Processes have access to a stable storage device that sur-
vives failures. The number of tolerated process failures may
vary from 1 to N [14].

III. RELATED WORK

In Chandy-Lamport algorithm [1] control messages are
sent to all the nodes for consistent global checkpoint.
Hence message send overhead is increased along all the
channels of network.
 Acharya-Badrinath algorithm [9] proposed an uncoordi-
nated checkpointing algorithm for mobile distributed sys-
tem because they found the limitations of high cost to re-
ceive request messages along every channel in network and
absence of local checkpoint of MH during disconnect in-
terval in coordinated checkpoint algorithm.

In Koo-Toueg Algorithm [7] the underlying computa-
tion is blocked. There is direct dependency approach is
used while global snapshot collection. Such algorithm is
not suitable for concurrent initiation.

In Venkatessan and Juang’s optimistic failure recovery
algorithm [15] no dependency information is send with the
computation messages. Hence while recovery process too
many rollbacks occur.

In [3] Guohong Cao and Mukesh Singhal had proposed
an efficient algorithm that neither forces all the processes to
take checkpoints nor blocks the underlying computation
during checkpointing and which significantly reduces the
number of checkpoints. In this paper it is described that
there does not exist a non-blocking algorithm that forces
only a minimum number of processes to take checkpoints.
Their algorithm requires minimum number of processes to
take tentative checkpoints and thus minimizes the workload
on stable storage server. Their algorithm has three kinds of
checkpoints: tentative, permanent and forced. Tentative and
permanent checkpoints are saved on stable storage. Forced
checkpoints do not need to be saved on stable storage. They
can be saved on any where even in the main memory.

In [4] Guohong Cao and Mukesh Singhal had introduced
the concept of “Mutable Checkpoint” which is neither a

tentative checkpoint nor a permanent checkpoint to design
efficient checkpointing algorithms for mobile computing
system. Mutable Checkpoint can be saved anywhere e.g.
the main memory or local disk of MHs. Taking a mutable
checkpoint avoids the overhead of transferring large
amount of data to stable storage at MSSs over the wireless
network.

MHs

MSS MSS

Wireless Cell Wireless Cell

Static Network

Wireless Link

Figure 1. Mobile Distributed System

MSS

IV. MANAGING CHECKPOINITNG ISSUES

Checkpointing cost in mobile distributed systems have
three components: (1) Searching of MHs due to the mobile
nature of MHs (2) To save the checkpoints due to the lack
of stable storage on MH. (2) Transmit and receive the
checkpointing from MH to MSS vice-versa, due to the
wireless connectivity between both. Taking into considera-
tion of different checkpoint issues and reducing the check-
point cost, our new checkpoint algorithm mainly focuses on
following:

A. Low Power Consumption at MHs Level:
Our proposed checkpointing algorithm uses the follow-

ing tricks to save the battery power of an MH:
• Due to the limited power and computation ability

of MHs, and unlimited power and computation
ability of an MSS, in our approach all the depend-
ency information and other MHs related informa-
tion are maintained in the corresponding MSS in-
stead of itself.

• The checkpoint request are sent to the process in
minimum set (which are directly or transitively de-
pended on the initiator) to reduces the power con-
sumption.

B. Efficiently use of Limited Available Memory of MHs
 As the most of the data are stored on the stable storage

of the MSS and only needful information are stored on
to the MHs.

C. Efficiently use of Limited Wireless Bandwidths
To optimize the wireless bandwidth we use the concept
of soft checkpoint, these soft checkpoint are stored on
the local memory of MH and stored only if the local
checkpoint time expires or any untimely event occurs.

D. Reducing Searching Cost:
 Corresponding MSS keeps the record message re-

ceived, sent, location and checkpoint record. By main-
taining the location information of an MH on MSS, we
reduce the searching cost and shorten the checkpoint-
ing latency.

E. Handling Mobility
As the mobile nature of an MH, an MHs may not stay
forever in only one MSS and local information may be-
come out of date without proper handling of handoffs. In
our approach to handle the handoffs each MSS maintains
a location list of MHs that join and leave that MSS.
When MHi depart from a cell and joins with another
cell, it first sends a DEPART () message to the old MSS,
and then established a new connection by sending JOIN
message by attaching the ID of own MH and old MSS.
Once a MH join with the new MSS, then new MSS re-
ceive the old data related to the new joined MH by send-
ing message OLDDATA (MHid, old MSSid). In such

© 2010, IJARCS All Rights Reserves 151

Surendra Kumar et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 150-155

way old MSS sends all the details to the new MSS and
update the LOCATION information of the MH on its
own level. New MSS store all the necessary on its own
storage.

F. Handling Disconnection
Disconnection of an MH is a voluntary operation and it
may take arbitrary period of time. At the time of dis-
connection from MSS1:
• MH takes its local checkpoint which is stored at

MSS1 as disconnect_checkpointi which serves re-
quest messages for MH to take checkpoint

• Stores its dependency vector Di at MSS1.
• The Computation messages, for MH arriving at

MSS1 during disconnect interval are stored at
MSS1 until the end of the interval.

.
Reconnection

At the time of reconnection to MSS2: MH executes a
reconnection algorithm. The reconnection algorithm sends
a message through MSS2 to MSS1. On receiving the mes-
sage MSS1 executes the following steps:

• If MSS1 had processed request message for MH
then disconnect_checkpointi and the buffered mes-
sages are sent to MH.

• If no checkpoint request for MH was received by
MSS1 during disconnect interval only buffered
messages are sent.

• After that MSS1 removes the buffered messages,
disconnect_checkpointi and MH’s dependency
vector.

When the data sent by MSS1 arrives at MH, MH executes
the following actions:

• If the received data contains discon-
nect_checkpointi, MH stores this checkpoint as its
local checkpoint and resets all except the ith com-
ponent of dependency vector Ri before processing
the messages.

• Process all the received buffered messages.
• The dependency vector is updated.

Now this reconnect algorithm ends and MH makes nor-
mal communication.MSS1 removes the discon-
nect_checkpointi at the end of disconnect interval. In such a
way mobility and disconnection of MH get managed.

V. THE CHECKPOINTING ALGORITHM

In this section, we present a mobility based efficient
checkpoint algorithm for mobile distributed systems. The
algorithm forces a minimum set of nodes to take local
checkpoints. Thus overhead of checkpoint collection get
minimized. After the coordinated snapshot collection termi-
nates, the nodes that did not participate in snapshot collec-
tion can take their local checkpoints in lazy phase approach.
When a node initiates a request for snapshot collection to
another node then that node takes its local snapshot and
propagating the request to neighbouring nodes. A global
snapshot is collection of all the local nodes which partici-
pates for snapshot initiation. The snapshot thus generated is
latest than each of the snapshot thus collected independ-
ently. Thus amount of lost work during rollback, after the
node failure is minimized. The underlying computation need
not have to be suspended during snapshot collection.

A. Maintain Minimal Dependency Information:
For maintaining dependency information we here use

the same approach as in [2]. The dependency is created by
means of messages between nodes. Node Pi maintains a
Boolean vector Di of n components. At Pi, the vector initial-
ized as follows:

 (a) (b)

Figure 2(a, b) Dependency vector forming equation 2(b) Propagation

of dependency information via D[i] vector.

When a node Pi sends a message to Pj it then modifies

vector Di. This informs Pj about the nodes that have af-
fected Pi. While processing a message M Pj extracts Boo-
lean vector M.D from the message and uses it to update Dj
as follows: Dj[k] ← Dj[k] OR M.D[k], where 1 ≤ k ≤ n.
Fig. 2 (b) shows the dependency information through mes-
sages: Since P2 was dependent on P1 before sending M2 to
P3; P3 becomes transitively dependent on P1 on receiving
M2.

 Fig.3 shows the vertical line G1 the global checkpoint
at the beginning of the computation. Let Process P2 initiates
a new snapshot collection. only P3 and P4 need to take their
local snapshot because they depends upon node P2 .But the
nodes P1 and P5 need not take their snapshot because they
do not have dependencies on to process P2.Dotted line G2
shows the global recovery line or current global checkpoint.

There must be a great need to avoid the orphan message
to maintain the global consistent state checkpoint in global
checkpoints collection. There are three processes P, Q and
R. Let Q initiates checkpoint request to processes P and R.
Let P and R take their local checkpoints. If R sends mes-
sage M to P before receiving checkpoint request then mes-
sage M will become an orphan message which creates a
problem during snapshot collection. To avoid such problem

Di[j] =

1 i = j

0 i≠j

P1

P2

P3

P4

P5

GS1 GS2

Figure 3. Minimum no. of checkpoints and Consistent
Global State (CGS) or consistent cut.

P1
 [100]

P2

P3
 [001]

 [110] [010]

 [111]

© 2010, IJARCS All Rights Reserves 152

Surendra Kumar et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 150-155

a concept of checkpoint sequence number get arise. We call
this ckpt_num in our algorithm.

B. Data Structure
 Di : a Boolean vector Di of n components. At Pi, the
vector initialized as follows as in [2]:
Di[i] = 1; Di[j] = 0 if i ≠ j; When a node Pi sends a message
to Pj it then changes vector Di . This tells Pj about the nodes
that are dependent on Pi. While processing a message M Pj
extracts Boolean vector M.R from the message and uses it
to update Rj as follows: Dj[k] ← Dj[k] OR M.D[k], where 1
≤ k ≤ n.
 ckpt_num: when the node takes its local checkpoint then
this integer number is increased.
 Weight: A nonnegative real variable with maximum val-
ue 1 used to detect the termination of snapshot collection or
checkpointing algorithm.
 Transmit: a Boolean array of size n maintained by each
node in its stable storage. This array is initialized to all ze-
ros. It is used to keep the trail of those nodes to which
checkpoint requests were sent by node. If in this array each
element has all 0s then response message is sent to the snap-
shot initiator with a weight equal to weight received in the
request. If in this array some elements are put to 1 then for
all i such that transmit[i] = 1, a request is sent to Pi with a
non zero segment of weight received in request message and
rest part of weight is sent to initiator with a response mes-
sage.
 Trigger: A set of 2-tuples (init_id, init_ckptnum) main-
tained by each node, where init_id indicates the identifier
of checkpointing initiator. init_ckptnum shows the check-
point number of the initiator node when it took its own
local snapshot on initiating the snapshot collection. trigger
is changed for all system messages and the first computa-
tion message that a node sends to every other node after
taking a local snapshot.
 ckpt_array: This is an array of n integer maintained at
each node, ckpt_array[i] indicates the ckpt_num of the next
message expected from node Pi.
 self_trigger: The trigger tuple of a node receiving com-
putation message
 msg_trigger: Trigger tuple of computation message
 get_weight: The weight received by dependent nodes
 forward_weight: The weight sends by the node which
further spread checkpoint request

C. The Algoritm
To minimize the number of MHs taking checkpoints,

the checkpoint initiator has to identigy which MHs must
take a checkpoint. The detailed checkpointing algorithm is
described as follows:
(a)Checkpoint initiation process: If the checkpoint initia-
tor process, say Pin runs on an MH, it first takes soft check-
point and sends the checkpoint initiation request to its local
MSS, say MSSini and then MSSini become the checkpoint
proxy. This proxy MSS handle all the computation and
location information regarding the MH and act as follows:
(1) Increments its ckpt_num (2) initialized weight to 1 (3)
It sets init_id and init_ckptnum in its trigger tuple (4) It
sends checkpoint request message to all its dependent
nodes. The request message now includes: weight, initia-
tor’s trigger and dependency vector Di.
(b)Response of a node receiving of checkpoint request:
Let node Pi receives checkpoint request

if (reqst_msg.trigger ≠ Pi.trigger) then
 {
 Pi takes soft checkpoint;
 Pi propagates reqst_msg to all the dependent nodes but
 not M.Di; /* Explained Checkpoint module */
 Send portion of the received weight with its reqst_msg;
 Update initiator trigger tuple;
 Send response_msg to the initiator;
 }
else if (transmit[i] = 0) then
 {
 Pi send response_msg with weight received with
 reqst_msg to initiator;
 }
 else
 {
 Pi send reqst_msg to nodes for which transmit[j] =1
 with portion of weight;
 Pi sends response_msg with remaining weight to initiator;
 }
}

(c)Response of a node receiving of computational mes-
sage: Let a node Pj receives a computation message M
from other node Pi then following action occurs:
If (ckpt_numi ≤ ckpt_array[i]) then
 {
 Pj will not take any checkpoint;
 Restart the computation by processing message M;
 }
else
 {
 Set ckpt_array[i] = ckpt_numi ;
/* Pi has already taken a checkpoint before sending M and
 this is the first computation message sent from Pi to Pj.
 So M carries a trigger (init_id, init_ckptnum)*/
 }

 if (msg_trigger = self_trigger) then
 Update dependency vector Di[j];
 // Pi and Pj has taken checkpoints w.r.t same initiator
else (msg_trigger.pid ≠ self_trigger.pid)
 {
 If (Pj had processed a message from node Pk) then
 Return;
 Pj takes tentative checkpoint;
 Set msg_trigger=self_trigger;
 Propagate snapshot request to dependent processes;
 }
 }

(d)Further Checkpoint request propagation: Let node Pi
take checkpoint request. It propagates checkpoint request to
its dependent processes as follows:
Take soft checkpoint;
Update ckpt_numi and transmit[i] ;
 Self_trigger=msg_trigger;
 transmit[i] = Ri – M.R;
 for all k dependent nodes set transmit[k]=1
 {
 get_weight = get_weight/2
 forward_weight = get_weight;
// Send following module to dependent nodes //

© 2010, IJARCS All Rights Reserves 153

Surendra Kumar et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 150-155

send(Pi ,request_msg,chkpt_num,self_trigger,forward_weig
ht);
}

(e) Termination of Checkpointing: After receiving the
checkpoint request message, each MH sends a reply to the
MSSini along with weight. When the initiator receives re-
ply from all the relevant MHs means the sum of received
weight becomes equal to 1. it make a decision whether it
commit or abort to all the relevant processes. This is same
as any other two –phase checkpointing strategies. On re-
ceiving COMMIT or ABORT message from the initiator
MSS the process Pi act as follows:
On receiving COMMIT()
If(Softi)
{
Discard old permanent checkpoint, if any;
Convert the tentative checkpoint into permament one;
}
On receiving ABORT()
{
if (softi)
Discard the soft checkpoint;
}
If a process receives commit message, if it taken soft
checkpoint already The previous permanent local check-
points at these nodes are discarded. Now if further recovery
is required the nodes will rollback to current checkpoint.

D. Working Example
Following example (Fig. 4) clarifies the concepts used

in our algorithm with the help of Fig node P3 initiates snap-
shot collection by taking its local checkpoint. The node P2
and P4 shows dependencies to P3. The broken arrows shows
request messages sent to P2 and P4 to take their snapshots
on their timeline. P4 takes first snapshot and then sends a
message M3 to P2. When M3 reaches P2 it is the first mes-
sage reached at P2 such that msg_trigger.pid ≠
self_trigger.pid. Hence P2 takes its snapshot before process-
ing M3. Node P1 takes its local independent snapshot be-
fore sending a message M4 to P2. The interval number of
M4 is greater than the value expected by P2 from P1.

But when M4 reaches P2 it is not the first computation
message received by P2 with a higher interval number than
expected whose msg_trigger.pid is different from P2’s
self_trigger.pid. So a snapshot is not taken because it will
create inconsistency: The reception of M3 will be recorded
if P2 takes a snapshot just before it processes M4, but the
transmission of M3 will not have been recorded by P4 and
now M3 becomes orphan. Also here msg_trigger of M3 =
self_trigger of request message to P2 . Hence no need to
take further checkpoint.

VI. RESULT AND DISCUSSION

In this algorithm we have described a efficient coordi-
nated checkpointing algorithm to survive a failure in mo-
bile distributed system which is able to save consistent
global states with small overheads by reducing the search-
ing cost as well as power and bandwidth requirements. The
main feature of our algorithm are: (1) it is non-bocking ;(2)
it is orphan free as it takes checkpointing decision on the
basis of checkpoint sequence number; (3) it is less power
consuming as it is forces to take minimum processes which
are directly and transitively dependent on the initiator proc-
ess and all the information related to the MHs are handled
by there corresponding MSS; (4) it utilize the wireless
bandwidth efficiently as the only minimum required infor-
mation are transfer through between MHs and MSSs. (5) it
minimize the coordinated message as MSS maintain a mi-
nimal dependency information related on its own level.

VII. REFERENCES

[1] K.M. Chandy and L.Lamport. “Distributed Snapshots:
Determining Global States of Distributed Systems”
ACM Transactions Computer systems vol. 3,
no.1.pp.63-75, Feb.1985.

[2] Prakash R. and Singhal M., “Low-Cost Checkpointing
and Failure Recovery in Mobile Computing Systems”
,IEEE Transaction On Parallel and Distributed
Systems, vol. 7, no. 10, pp. 1035-1048, October1996

[3] Guohong Cao and Mukesh Singhal, “On Coordinated
Checkpointing in Distributed Systems” IEEE
Transaction On Parallel and Distributed Systems, vol.
9, no. 12, pp. 1213-1224, December 1998.

[4] Guohong Cao and Mukesh Singhal, “Mutable
Checkpoints: A New Checkpointing Approach for
Mobile Computing Systems”, IEEE Transaction On
Parallel and Distributed Systems, vol. 12, no. 2, pp.
157-171, February 2001.

P1

P2

P3

P4

M1

M2 M3

M4

Computation message

Figure 4. Global checkpoint collection

Request message

[5] Weigang Ni, Susan V. Vrbsky and Sibabrata Ray
“Pitfalls in Distributed Non blocking Checkpointing”,
University of Alabama

[6] Prakash R. and Singhal M. “Maximal Global Snapshot
with concurrent initiators,” Proc. Sixth IEEE Symp.
Parallel and Distributed Processing, pp.344-351,
Oct.1994.

[7] Koo. R. and S.Toueg. “Checkpointing and Rollback-
Recovery for Distributed Systems” .IEEE Transactions
on Software Engineering, SE-13(1):23-31, January
1987.

[8] Bidyut Gupta, S.Rahimi and Z.Lui. “A New High
Performance Checkpointing Approach for Mobile
Computing Systems”. IJCSNS International Journal of
Computer Science and Network Security, Vol.6
No.5B, May 2006.

© 2010, IJARCS All Rights Reserves 154

Surendra Kumar et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 150-155

[9] Acharya A. and Badrinath B. R., “Checkpointing
Distributed Applications on Mobile Computers,”
Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems, pp. 73-
80, September 1994.

[10] Ch.D.V. Subba Rao and M.M.Naidu. “A New,
Efficient Coordinated Checkpointing Algorithm
Combined with Selective Sender-Based Message
Logging”

[11] Nuno Neves and W. Kent Fuchs. “Adaptive Recovery
for Mobile Environments”,in Proc.IEEE High-
Assurance Systems Engineering Workshop,October
21-22,1996,pp.134-141.

[12] Y.Manable. “A Distributed Consistent Global
Checkpoint Algorithm With minimum number of

Checkpoints”. Technical Report of IEICE, COMP97-
6(April1997)

[13] J.L.Kim and T.Park. “An efficient algorithm for
checkpointing recovery in Distributed Systems” IEEE
Transaction On Parallel and Distributed
Systems,4(8):pp.955-960, Aug 1993.

[14] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson
D.B., “A Survey of Rollback-Recovery Algorithms in
Message-Passing Systems,” ACM Computing Surveys,
vol. 34, no. 3, pp. 375-408, 2002.

[15] S.Venkatesan and T.T.-Y.Juang , “ Low Overhead
Optimistic Crash Recovery:”, Preliminary version
appears in Proc. 11th Int’l Conf. Distributed
Computing Systems as “Crash Recovery with Little
Overhead,”pp.454-461,1991.

© 2010, IJARCS All Rights Reserves 155

	I.
	I. Introduction
	II. SYSTEM MODEL
	III. Related work
	IV. MAnaging checkpoinitng issues
	A. Low Power Consumption at MHs Level:
	B. Efficiently use of Limited Available Memory of MHs
	C. Efficiently use of Limited Wireless Bandwidths
	D. Reducing Searching Cost:
	E. Handling Mobility
	F. Handling Disconnection
	V. The checkpointing algorithm
	A. Maintain Minimal Dependency Information:
	B. Data Structure
	C. The Algoritm
	D. Working Example

	VI. result and discussion
	VII. References

