
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 2182

ISSN No. 0976-5697

 Defect Prediction by Pruning Redundancy in Association Rule Mining

Amarpreet Kaur
 Research Scholar, Computer Science & Technology

Central University of Punjab
Bathinda, India

Dr. Satwinder Singh
 Assistant Professor, Computer Science & Technology

Central University of Punjab
Bathinda, India

Abstract: Defect prediction is a major problem during software maintenance and evolution. It is important for the software developers
to identify defective software modules to improve the software quality. Many organizations want to predict the defects in software systems,
before they are deployed, to improve and measure the quality of software. Different researchers proposed various approaches to extract the
defect prone modules in the specific software system. This paper focuses on an effective model, called Apriori, which uses the approach of
association rule mining. Association rule mining remains a very popular and effective method to extract meaningful information from a large
data set. Apriori algorithm is based on the discovery of association rules for predicting whether a software module is defective or not.
Different algorithms perform in different manner on distinct datasets. This paper analyzes the shortcomings of Apriori algorithm and studies the
improvement strategies to improve the performance of Apriori algorithm by removing the redundancy of rules generated on the basis of
different parameters. In this paper, we use a new method to find the best ‘n’ association rules out of pool of ‘k’ association rules based on
heuristic analysis. This study will help improve the existing software defect prediction models in terms of precision, performance and other
aspects.
Keywords: Defect Prediction, Data Mining, Association Rule Mining, Apriori

I. INTRODUCTION
Software quality plays a vital role in the software

industry. However, it is very expensive to build software
of optimum quality. Thus, to enhance the efficiency
and usefulness of quality assurance and testing, there
should be an efficient model for tracking the defects.
As there are many techniques to tackle the defects, but
it will be more efficient to predict them in advance
so as to reduce the testing effort and improve the
quality of the software. To upgrade the quality of
software system, defect-prone modules are identified
using Software defect prediction. [1] In addition to
this, defect prediction is an important issue during
software maintenance and evolution. A number of
organizations desire to reveal the defects in advance in
software systems to improve and measure the quality
and maintenance effort, before they are deployed.

Most of the models utilized for defect prediction
consider size and complexity metrics. But, some are based
on testing data or take an approach based on more than
one variable. These models are not reliable as they are
unable to process with the relationships between defects and
failures which are unknown. Most of the prediction models
tend to model only part of the underlying problem. But
adjoining approach builds the association rules on the
attributes of the software which are taken as item sets.

ASSOCIATION RULE MINING

There are numerous mining techniques for instance
clustering, classification, and association rule mining to
extract meaningful information from large datasets. This
study focuses on association rule mining, which produces
interesting relations between variables in the dataset in the
form of association rules. To create such association rules,
frequent patterns must be generated first. Furthermore, these
frequent pattern mining forms the crux of any association
rule mining process.

Association rule mining means searching the attribute-
value conditions that frequently occur together in a dataset
[2]. It tries to find possible associations between item sets
in large datasets. An approach to apply association rule
mining is proposed by using Apriori algorithm to predict
the defects in the specific software system. We applied the
Apriori on open source datasets to perform the
experimental evaluation of the proposed model. [3]Ordinal
association rules specify ordinal relationships between
record attributes for a given set of records described by
a set of attributes that hold for a specific sample of
the records. But attributes with different domains and
relationships between them, exist in real world data sets[4].
In such situations, sequential association rules do not
have enough strength to describe data regularities.
Consequently, association rules were introduced in
order to be able to capture various kinds of
relationships between record attributes[5]. Relational
association rule mining has not been applied so far
for predicting if a software entity is defective or not.
We therefore aim in this paper at methods based on
relation association rules, whose effectiveness is studied
through the experimental results. Association rule mining
exposed multiple applications in distinct areas such as
Crime Detection/Prevention, Cyber Security and crowd
mining (i.e. Market basket analysis to improve the sales).

II. LITERATURE REVIEW

To manage a large scale software development,
quantitative models are required. To assess the complexity
software engineers provided us with few techniques. To form
the multivariate models, the main approaches used so far are
multivariate regression analysis and classification trees. L. C.
Briand, Basili, & Thomas[6] studied these techniques and
their flaws and proposed a new better approach called pattern
recognition. The main problem with classification trees was
that they select most relevant variable assuming that variable

Amarpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2182-2186

© 2015-19, IJARCS All Rights Reserved 2183

to be equally relevant regardless of its value (i.e. high/low),
whereas Regression techniques use the dummy variables to
deal with discrete variables. Although regression techniques
can be very useful and effective but interpretation of the
models based on regression equations is complex task [6].
They proposed a model called OSR (Optimized set
Reduction) which uses pattern recognition technique to
combine the expressiveness of classification tress with a
statistical approach. To assess the effectiveness of OSR, it
was applied to estimate productivity for each project based
upon COCOMO cost drivers. OSR is useful for extracting
meaningful patterns from the datasets for prediction, risk
management, and quality evaluation. [7] A tool supporting
this approach was developed during TAME project in
University of Maryland, and it was investigated to solve
several software engineering problems such as project cost
estimation. The software can be very complex, so applying
testing efforts on all the software components is not an
efficient especially when resources available are limited. In
such situation, one needs to identify the components with
high/low fault frequency. Hence to improve the reliability of
the system, researchers enhanced optimized set reduction
approach which they proposed earlier, logistic regression and
classification trees [8]. These methods were implemented on
146 components of an ADA system which consists of 260
KLOC (kilo lines of code). OSR implemented with TAME
project chose correctness and completeness performance
metrics to evaluate their prediction models. The best
performance among was achieved with OSR technique in this
study with correctness and completeness of above 90%. OSR
patterns seem to be more stable and interpretable.

Data reduction property of OSR is the main strength but
sometimes the important information is lost. It is found that
highly structures [1]Pattern recognition tasks require
architectures with many parameters to make loading of
weights effective. Moreover, it takes more execution time on
large datasets. In order to solve the problem of working on
large databases [9] proposed two new association rule mining
algorithms, Apriori and AprioriTid, to generate candidate
itemsets. AprioriTid has the property that database is not used
for counting support after the first pass. In this research paper
the relative performance of the algorithms was assessed. To
assess the relative performance, experiments were performed
on IBM RS/6000 530H workstation. The data was stored in
2GB SCSI 3.5” drive. Algorithms like AIS and SETM were
used to compare the performance of different rule mining
algorithms. Apriori proposed earlier takes a lot of space and
response time due to its exponential complexity. In order to
reduce its complexity [10] proposed an improved Apriori
Algorithm based on the matrix. This paper presents
mathematical formula for selecting the cluster and an
improvement by using parallel algorithm. It compares the
time consumed by original Apriori with the improvised
Apriori. Results show that proposed approach reduced the
memory space and time consumption by 63.17%. As the
massive amount of data increasing day by day is far beyond
the approach of a single machine. This paper proposed a new
faster and efficient algorithm based on Apriori, called R-
Apriori which is a parallel Apriori implementation which
reduces the computational complexity of distributed Apriori
and hence improves the performance [11]. It was an enhanced
version of YAFIM (yet another Frequent Item Mining),
which is an implementation on spark, implemented on five
large datasets: T1014D100 K (artificial datasets generated by
IBM’s data generator), Retail dataset (for market basket
analysis), Kosarak dataset (donated by Ferenc Bodon), BMS

Web view (used for KDD cup 2000), T2510D10K (synthetic
dataset generated by random transaction database)

R-Apriori outperforms classical Apriori on spark platform
for various datasets. There are few many more models for
frequent data mining .These can be used for defect prediction.
However, performance of different techniques varies. To
compare the performance [12] implemented four models for
static defect prediction as Naive Bayes, Neural Networks,
Association rules and Decision Tree for extracting software
defect models. The performance of all four approaches was
compared by accuracy, precision, F-measure and classification
metrics. The comparative studies show that the correctness of
all four algorithms is nearly equal but Naive Bayes gives the
best performance. However, Association rules approach has
the highest precision among all four approaches. But the
authors have applied these techniques on specific data not
generalized it for all the software datasets[13]. So it can be a
good future work to test the validation of results on various
data sets.

Although many models have been proposed in the software
defect prediction literature, researchers are still focusing on
developing more accurate defect predictors using association
rules.[14] Recent results show that researchers should
concentrate on improving the quality of the data to overcome
the limits of the existing software prediction models. For this
purpose [15] introduced relational association rules which are
capable of discovering various kinds of associations and
correlation between data in large datasets. Relational
association rules are an extension to the association rules. A
software module can be characterized by set of software
metrics which may decide whether or not a module is
defective. [16] Proposed a new algorithm called DOAR
(Discovery of Ordinal Association Rules) that efficiently finds
all ordinal association rules of any length that hold over a
dataset. This algorithm identifies the ordinal association rules
using an iterative process that consists in-length-level
generation of candidate rules, then the verification of
candidates for minimum support and confidence compliance is
done. DOAR performs multiple passes over the dataset. It
provides two functionalities:
• All interesting association rules of any length
• Finds all maximal interesting relational association

rules of any length.
Four software metrics were considered to predict the default

by implementing DPRAR; a supervised method for detecting
software entities with defects, based on relational association
rule mining. Experiments were performed on six different
datasets including MW1 dataset which contains data about a
zero gravity experiment related to combustion, The JM1
dataset which contains data about a real-time predictive
ground system, The PC1 dataset built for functions from a
flight software for earth orbiting satellite. Considering
accuracy, [17]DPRAR classifier outperforms the other
classifiers on six of the datasets. It can be extended to identify
and consider different types of relations between the software
metrics. Also, to investigate how the length of the rules and
the confidence of the relational association rules discovered in
the training data may influence the accuracy of the
classification task. For future use, it can be combined with
other machine learning based predictive models to hybridize
classification model. DPRAR performed better for 45
evaluation measures and worse in 23 out of 69 measures.

Amarpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2182-2186

© 2015-19, IJARCS All Rights Reserved 2184

Different association rule mining algorithms can be applied
in software engineering domain, but the question here is which
of them will work efficiently. The most commonly used
algorithms are Apriori and Frequent Pattern Tree Algorithm.
To analyze the effectiveness of these algorithms [18]
conducted a research to compare the efficiency on different
types of datasets. It considered Software risk factors and
software risk mitigation factors to analyze the effectiveness.
The research used the methodology of analyzing and
comparing the two algorithms in terms of tracing the software
risk and software risk mitigation factors and introduced the
new adaptive structure. [19] The comparative study concludes
that the FP tree algorithm works efficiently with large data sets
whereas Apriori works efficiently on small databases. [20]in
single machine environment, Apriori and FP- Growth
algorithms are not much efficient for large-scale data
association rule mining. They suffer from the problems of low
consumption performance and poor reliability. Also, they
predict the fault prone modules but not the defects which occur
in those modules. To implement it in more efficient manner
[21] focused on prediction of fault-prone and modules as well
as identifying types of defects that occur in fault-prone
modules. Karthik et Al. Used clustering rules to classify the
defaults based on their level of complexity into Simple,
Moderate and Complex categories. This proposed model
helped to identify a maximum number of defects that is
associated to a given defect. It improved the accuracy by using
this methodology and results in lower rate of false negatives.

III. RESEARCH METHODOLOGY

Apriori, Éclat, and FP-Growth are some of the widely used
algorithms for association rule mining proposed in recent
researches. Most of these algorithms scan the dataset
sequentially to generate frequent patterns, which is one of the
most popular data mining techniques. These frequent patterns
can later be used for rule generation. Apriori uses this approach
as explained below.

The Apriori algorithm was proposed by R. Agrawal et al.
[8]. It works on the basic observation that an itemset is
frequent only if all its non-empty subsets are also frequent. It
works on an iterative approach in which frequent item sets are
found in the current iteration using the results of the previous
iterations. First, it finds singleton frequent items where an item
occurring more times than a specified minimum threshold,[22]
which is termed as support count, is termed frequent.
Following this approach, K-frequent itemsets are found using
K-1 frequent itemsets. After finding singleton frequent items, a
candidate set is generated. The candidate set for the kth
iteration has all combinations of items having size K whose all
possible subsets are present in K-1 frequent itemsets[23]. These
frequent itemsets generated in kth iteration are used for the
generation of candidates in next iteration. It keeps iterating
until all frequent patterns are found. Many researchers have
applied neural networks approach for defect predictions to
improve quality. Three-layer neural network with sigmoid
function was used by training the neural network based on
historical data[24]. As discussed earlier, classic Apriori lacks in
utilizing time and memory[25]. Moreover, the rules generated
by existing algorithms are not efficient because these
approaches consider all the strong rules to make the
predictions.[26] But some of those rules are redundant. A new
approach to weed out the weak rules was suggested by Kumari,
D. et. Al [27]on the basis of three parameters: support,
confidence and correlation. Further, to analyze the quality of

association rules, eight interestingness measures were used.
These interesting measures can be calculated statistically within
resulting rule set generated[28]. To remove the redundancy of
those rules, a new approach will be suggested by pruning them
on the basis of specific measures. After generating the rules
validation of results is required to evaluate the proposed
method. Hence, this approach will work as shown in figure 1.

A. Apriori Algorithm
The process of the algorithm is as follows.
Step1. Set the minimum values for support and confidence.
Step2. Construct the candidate 1-itemsets; generate the
frequent 1-itemsets by pruning some candidate 1-itemsets if
they do not meet the requirement of minimum support.
Step3. Join the frequent 1-itemsets with each other to
construct the candidate itemsets constructed in step2 and
prune some infrequent itemsets from the candidate 2-
itemsets to create the frequent 2- itemsets.
Step4. Repeat step3 until no more candidate itemsets can be
created.
Pseudo-Code
Ck: Candidate item set of size k
Lk: frequent itemsets of size k
L1= {frequent items};
for (k= 1; Lk !=∅; k++)
Do
Begin
Ck+1= candidates generated from Lk;
for each transaction t in database do
Increment the count of all candidates in
Ck+1 that are contained in t
Lk+1= candidates in Ck+1 with min_support
end
return Uk Lk;

Figure 1 Flowchart of Proposed Model

IV. RESULTS AND DISCUSSION

The objective of this paper is to discover the interesting rules
by considering the different parameters- Support, Confidence

Amarpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2182-2186

© 2015-19, IJARCS All Rights Reserved 2185

and Lift. These parameters are used to prune weak association
rules which tend to creep into the top n association rules.
Apriori algorithm is used to generate association on the basis
of rules support and confidence framework. Support=30%,
Confidence=0.95 is used, hence all the association rules which
qualify these two threshold will be considered.

Table 1 Top 10 Association rules selected

We are taking Eclipse 3.1 dataset for finding the association
rules between OO-metrics for getting the best predictor of
fault using these rules. First of all, convert the dataset column
value from numerical to nominal value and apply the
algorithm. There are four possible outcomes which are
formulated in the form of table called confusion matrix, as
follows:

 Actual Value
Predicted
Outcome

True Positive(TP) False
Positive(FP)

False
Negative(FN)

True
Negative(TN)

After getting the interesting rules, we implement them
on different datasets to predict the faults or defects.
Maintaining the Integrity of the Specifications

Based on top 10 association rules, we received predicted
outcomes, which are compared with actual values. Results
show that the association rules generated performs better to
predict the non-defective modules than defective modules.
Hence we got the values of performance measures of 10
different rules for predicting defective and non-defective
modules. To summarize, average of measures for 10 rules is
calculated, which is as follows:

Table 2 Performance measures for all four versions

 Measures 3.1 3.2 3.3 3.6

Defective Precision 0.23 0.35 0.38 0.48

Recall 0.65 0.65 0.64 0.6
Non-

Defective
Precision 0.98 0.97 0.97 0.96

Recall 0.89 0.85 0.92 0.91

The pictorial representation of the results is shown in figure
2 for comparison of the precision and recall values for the
different four versions. Results show that precision for

predicting defective modules increases as we go for higher
versions.

Figure 2 Comparison of performance for different versions

Precision for predicting defective modules is low, because
the approach used generates rules based on frequent itemsets.
In our data sets, majority of modules were non-defective.
Hence it generates better rules for predicting non-defective
modules.

V. CONCLUSION

In this paper, we conducted association rule mining and
statistical analysis to predict the software defects. This paper
also presented the heuristics to rank the association rules by
considering three parameters: support, confidence and lift.
This method will generate best associations as it can weed out
weak associations and actual best association rules will be
easily recognized. Therefore, for those datasets which contain
large number of transactions, it can give efficient association
rules. We found that the predictor proposed give better results
in predicting the presence and absence of faults in Eclipse
software.

The existing algorithms can be parallelized using
MapReduce platform which is a familiar fault tolerant
framework[29]. A recently proposed in-memory distributed
dataflow platform called Spark which overcomes the
drawbacks of MapReduce. The knowledge of available
software repositories can be integrated with current software
development and tools and fault detection systems to notify
software developers with potential software defective
modules.

VI. REFERENCES

[1] X. Amatriain, A. Jaimes, N. Oliver, and J. M. Pujol, Data
Mining Methods for Recommender Systems. 2011.

[2] R. Agrawal, “Mining Association Rules between Sets of
Items in Large Databases,” no. May, pp. 1–10, 1993.

[3] P. He, “The Research of improved Association Rules Mining
Apriori,” Proc. - 3rd Int. Conf. Converg. Hybrid Inf.
Technol. ICCIT 2008, no. August, pp. 0–2, 2004.

[4] R. B. Diwate and A. Sahu, “Data Mining Techniques in
Association Rule : A Review,” vol. 5, no. 1, pp. 227 –229,
2014.

[5] V. Mangla, C. Sarda, and T. Nadu, “Improving the
efficiency of Apriori Algorithm in Data Mining,” Int. J. Eng.
Innov. Technol., vol. 3, no. 3, pp. 393–396, 2013.

[6] L. C. Briand, V. R. Basili, and W. M. Thomas, “A pattern
recognition approach for software engineering data
analysis,” IEEE Transactions, vol. 18, no. 11. pp. 931–942,

Lhs support confidence lift
{LCOM=0,DIT=0,IFANIN=2} 0.31 0.9982262 1.048

{LCOM=0,IFANIN=2} 0.33 0.9979227 1.047
{LCOM=0,IFANIN=2,NOC=0} 0.33 0.9978947 1.047

{LCOM=0,DIT=0,NOC=0} 0.35 0.9944312 1.044
{NOC=0,RFC=13}

0.5 0.9902125 1.039
{DIT=0,IFANIN=2,NOC=0} 0.36 0.9893617 1.038

{DIT=0,IFANIN=2} 0.37 0.9885397 1.037
{IFANIN=2,NOC=0} 0.42 0.9815772 1.030

{DIT=0,NOC=0} 0.48 0.9756305 1.024
{IFANIN=1,NOC=0} 0.39 0.9378134 0.984

Amarpreet Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2182-2186

© 2015-19, IJARCS All Rights Reserved 2186

1992.
[7] X. Deng and X. Wang, “Mining Rank-Correlated

Associations for Recommendation Systems,” IEEE, no.
062112065, pp. 625–629, 2009.

[8] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” Proceedings of the 20th International
Conference on Very Large Databases. pp. 487–499, 1994.

[9] J. Tian, “An empirical comparison and characterization of
high defect and high complexity modules,” vol. 67, pp. 153–
163, 2003.

[10] A. Bhandari, A. Gupta, and D. Das, “Improvised Apriori
Algorithm Using Frequent Pattern Tree for Real Time
Applications in Data Mining,” Procedia Comput. Sci., vol.
46, no. Icict 2014, pp. 644–651, 2015.

[11] S. Rathee, M. Kaul, and A. Kashyap, “R-Apriori: An
Efficient Apriori based Algorithm on Spark,” ACM, pp. 27–
34, 2015.

[12] A. H. Yousef, “Extracting software static defect models
using data mining,” Ain Shams Eng. J., vol. 6, no. 1, pp.
133–144, 2014.

[13] R. Mishra, “Comparative Analysis of Apriori Algorithm and
Frequent Pattern Algorithm for Frequent Pattern Mining in
Web Log Data .,” Int. J. Comput. Sci. Inf. Technol., vol. 3,
no. 4, pp. 4662–4665, 2012.

[14] T. M. Khoshgoftaar and N. Seliya, “Software Quality
Classification Modeling Using The SPRINT Decision Tree
Algorithm Taghi,” pp. 365–374, 2002.

[15] T. M. Khoshgoftaar, B. Raton, and R. M. Szabo, “An
Application of Zero-Inflated Poisson Regression for
Software Fault Prediction,” pp. 66–73, 2001.

[16] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect
prediction using relational association rule mining,” Inf. Sci.
(Ny)., vol. 264, pp. 260–278, 2014.

[17] J. Leskovec, Mining of Massive Datasets. 2014.
[18] M. Zhang and C. He, “Survey on Association Rules Mining

Algorithms 2 Basic Principles of Association Rules,” pp.
111–118, 2010.

[19] B. Goethals, “Survey on Frequent Pattern Mining,” pp. 1–
43, 2003.

[20] S. Veeramalai, N. Jaisankar, and A. Kannan, “Efficient Web
Log Mining Using Enhanced Apriori Algorithm with Hash
Tree and Fuzzy,” vol. 2, no. 4, pp. 60–74, 2010.

[21] R. Karthik and N. Manikandan, “Defect association and
complexity prediction by mining association and clustering
rules,” ICCET 2010 - 2010 Int. Conf. Comput. Eng. Technol.
Proc., vol. 7, pp. 569–573, 2010.

[22] S. Deepa and M. Kalimuthu, “An Optimization of
Association Rule Mining Algorithm using Weighted
Quantum behaved PSO,” vol. 3, pp. 80–85, 2012.

[23] S. Agarwal, “Prediction of Software Defects using Twin
Support Vector Machine,” pp. 128–132, 2014.

[24] Q. Wang and B. Yu, “Extract Rules from Software Quality
Prediction Model Based on Neural Network,” no. Ictai, pp.
0–2, 2004.

[25] I. Qureshi, J. Ashok, and V. Anchuri, “A Survey on
Association Rule Mining Algorithm and Architecture for
Distributed Processing,” Int. J. Comput. Sci. Inf. Technol.,
vol. 5, no. 3, pp. 4674–4678, 2014.

[26] T. M. Khoshgoftaar, “Tree-Based Software Quality
Estimation Models For Fault Prediction,” 2002.

[27] D. Kumari and K. Rajnish, “A new approach to find
predictor of software fault using association rule mining,”
Int. J. Eng. Technol., vol. 7, no. 5, pp. 1671–1684, 2015.

[28] J. Manimaran and T. Velmurugan, “Analysing the quality of
Association Rules by Computing an Interestingness
Measures,” vol. 8, no. July, 2015.

[29] Z. Rong, D. Xia, and Z. Zhang, “Complex statistical analysis
of big data: Implementation and application of apriori and
FP-growth algorithm based on MapReduce,” Proc. IEEE Int.
Conf. Softw. Eng. Serv. Sci. ICSESS, no. 2012, pp. 968–972,
2013.

	INTRODUCTION
	ASSOCIATION RULE MINING

	Literature Review
	Research Methodology
	A. Apriori Algorithm
	The process of the algorithm is as follows.

	Results and Discussion
	After getting the interesting rules, we implement them on different datasets to predict the faults or defects. Maintaining the Integrity of the Specifications

	Conclusion
	References

