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Natural frequency analysis of simply supported thin centrally attached hole 
rectangular plate with attached concentrated masses 
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Abstract- In the present work, free vibration response of a simply 
supported rectangular plate with attached concentrated masses 
has been analysed. The plate material is linearly elastic, 
homogenous and isotropic. Galerkin method is used for finding 
fundamental frequencies of plate with attached concentrated 
masses. The candidate mode shape of plate is approximated by 
the sine series, which satisfy the boundary conditions of simply 
supported at all the edges of the plate. The modal values obtained 
by Galerkin method are compared with that of obtained by 
ANSYS. The result obtained by Galerkin method is in good 
agreement with those of ANSYS for concentrated mass upto 
6.7% of the plate mass. It has been shown that by using one term 
of approximation for candidate mode in Galerkin method, the 
error in natural frequency of the plate is less than 0.06% when 
attached concentrated mass is less than 6.7% of plate mass. This 
saves a lot of computation.  
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2 
Dept. of Mechanical Engg, Sant Baba Bhag Singh University,  

Jalandhar – 144030 (Punjab), India 
bipinkbit@gmail.com 

I.  INTRODUCTION 
Vibration of plates with and without concentrated mass is very 
common engineering application. Rectangular plate has wide 
applications in mechanical and civil engineering. Plates form 
an essential part of many aerospace, marine and automobile 
structures [1]. It has been observed that rectangular plate with 
attached discrete masses are often encountered in engineering 
practices such as engineering slabs and cladding panel in 
building structure, bridge and ship decks [2]. Warburton 
investigated natural frequency of rectangular plate by Rayleigh 
– Ritz method [3]. Cohen and Handelman [4] have reviewed 
fundamental mode shapes and fundamental frequency of a 
rectangular plate having rigidly attached mass by Rayleigh – 
Ritz method. Leissa [5] and Laura et al. [6] have reviewed 
analytically free vibrations of plates with concentrated masses 
attached at discrete locations on plate. The effect of mass 
loading on natural frequency and mode modification of plate is 
done by Wong [7], Kopmaz and Telli [8]. Jian et al. [9] used 
Galerkin method for free vibration analysis of arbitrary 
laminated plate with clamped boundary conditions at all the 
edges of the plate. Dynamic analysis of plate and shell is done 
by L.W.Andreev [10]. The analytical solution of free and force 
vibration of cantilever, square and rectangular plate carrying 
point masses are investigated by Yu [11]. Vinayak and Ghosh 
[12, 13] have analysed free and force vibration of plate with 
attached masses and patches using Rayleigh – Ritz and finite 
element method 

The problem of free transverse vibration of rectangular simply 
supported plate with attached concentrated masses is 
considered here. The solution of problem is obtained by 
Galerkin method. The deflected surface of the plate is 
approximated by sine series, which satisfy the simply 
supported boundary conditions. The modal analysis of the 
plate with attached concentrated mass is also calculated by 
ANSYS and results are compared 

II. ANALYTICAL MODELLING 
A) A thin rectangular isotropic plate without concentrated 
mass and perforation with dimensions a and b is shown in Fig. 
1. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Rectangular plate without concentrated mass 
 
The fourth order partial differential equation governing the 
undamped, natural or free, linear vibration of a uniform 
isotropic rectangular plate is given by [14] 
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where w is the deflection of middle surface of the plate and is 
function of space and time, ρ is the density, h is the plate 
thickness and D is the flexural rigidity given as [14, 15] 
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The assumed solution of equation (1) is considered to have 
form [14], 
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),()sincos(),,( yxWtBtAtyxw ωω +=  (2) 
 
This is the separable solution of the shape function W(x, y) 
describing the modes of the vibration and some harmonic 
function of time; ω is the natural frequency of the plate 
vibration which is related to vibration time period T by the 
relationship ω = 2Π/T. Introducing equation (2) into equation 
(1) we get,  
   

0),( 222 =−∇∇ hWyxWD ρω     (3) 
Assuming that the shape function of plate is in the form of 
series (x, y) which satisfy the simply supported boundary 
conditions [14], we have 
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where Ci are unknown coefficients. 
 
In general procedure of the Galerkin method [14], the 
unknown coefficients Ci
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 can be obtained by orthogonality 
conditions as given by equation (5) 

  

     where k = 1, 2, 
3…, n  (5) 

  
The numerical implementation of equation (5) leads 

to the Galerkin system of linear algebraic homogeneous 
equation in the following form 
 
a11C1 + a12C2 +……………… = 0 
………………………………….. 
an1Cn + an2C2 + ……………… = 0      
(6) 
 
where aik = aki ∫∫ −∇∇ dxdyWhWWD kii )( 222 ρω =    

(7) 
This system of homogeneous equations has nontrivial solution 
if its determinant Δ (ω) is equal to zero. Therefore, we obtain 
nth

 The plate is simply supported along all of its edges. Rotary 
inertia of the plate has not been considered. The deflection of 
middle surface of the plate is approximated by using shape 
function W(x,y) which satisfy the boundary conditions on the 
edges x = 0, x = a and y = 0, y = b. By applying the Galerkin 

method, we find the solution of simply supported rectangular 
plate with attached concentrated masses as shown in Fig. 2. 

 order characteristic equation for finding natural frequencies 
[14] i.e. 
 
Δ (ω) = 0  (8) 
  
This equation has infinite number of solutions. The lowest 
frequency is called as fundamental or natural frequency and all 
other frequencies are called frequencies of higher harmonic. 
 
2.2 Determination of the fundamental natural frequency of 
plates with attached concentrated masses.  
 

 

 
Fig. 2. Coordinates of the plate simply supported on all edges 
carrying concentrated masses with attached hole 
 
The modified coefficients aik of Galerkin’s system of 
equations is given by [14]: 
 
aik = aki
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 where m is the mass of plate, Mc is 
mass of each concentrated mass and (- Mh) 
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is negative mass of 
hole in plate. 
The deflected surface of the plate is approximated by series as 
given by equation (10) 
 

   (10) 

This satisfies the boundary conditions of simply supported at 
all the edges of the plate. 
 
The first approximation (i.e. for i = 1 and j = 1) the coefficient 
a11
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 is given by equation  (11)  
  

      
    (11) 
 
For i = 1, j =1, we get from (10), one term of approximation of 
W (x, y) 

b
y

a
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    (12) 
Substituting W1

 

 in (11) and equating it to zero, we get the 
expression for natural frequency. 
 

III. FINITE ELEMENT MODELLING 
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The result obtained by Galerkin method is compared with that 
obtained by ANSYS, a finite element tool. For the plate 
material, the element type used is SOLID 185 with 8 node 
brick element and for rigidly attached concentrated mass, 
element chosen is structural mass in ANSYS. A convergence 
study has been carried out for mesh generated. The dimension 
of plate and attached concentrated masses are shown in Table 
1. The plate thickness doesnot vary and plate is simply 
supported along of its edges. The plate material i.e. mild steel 
is homogenous, linear elastic and isotropic. The material 
properties for all the specimens are E = 2.051*1011 N/m2, μ = 
0.3, ρ = 7850 Kg/m3

Specimen 
No 

. 
 

Table 1: Rectangular plate specimen with different 
concentrated masses attached 
a(m) b(m) h(m) Concentrated 

mass M (Kg) 
1 1 1.5 0.005 4 
2 1 1.5 0.005 4.5 
3 1 1.5 0.005 5 
4 1 1.5 0.005 10 
5 1 1.5 0.005 15 
6 1 1.5 0.005 20 
7 1 1.5 0.005 25 

 

IV. RESULTS AND DISCUSSIONS 
Now, the comparison of natural frequencies of the plate with 
attached concentrated masses for the first mode is given in 
Table 2. Last column of the Table 2 shows percentage error 
between natural frequency values obtained by Galerkin and 
ANSYS.   

 

 

Table 2: Fundamental frequency results of numerical 
(Galerkin) and FEM simulations 

 

Specimen 
No 

M(kg) 

Attached 
concentrated 
mass in % of 
plate mass 

ω 

(Hz) 

(Galerkin) 

ω 

(Hz) 

(ANSYS) 

 

% 
Error 

1 6.7 52.769 52.802 0.06 

2 7.6 52.070 50.435 3.2 

3 8.4 51.429 48.336 6.39 

4 16.9 48.994 41.969 16.73 

5 25.4 46.887 38.593 21.49 

6 33.9 45.923 36.861 24.58 

7 42.4 44.163 34.013 32.72 

 

In this, we have used one term of approximation for candidate 
mode in Galerkin method. Result shows that when 
concentrated mass is upto 6.7% of the plate mass, the error in 
natural frequency is less than 0.06% which can be an 
acceptable value. It is obvious that more number of terms in 

candidate mode shape may be required for higher value of 
attached concentrated mass. With increase in attached 
concentrated masses, deviation in natural frequencies increase. 

CONCLUSIONS 

In this paper, we have used one term of approximation for 
candidate mode shape in Galerkin method. Results shows that 
when concentrated mass is upto 6.7% of the plate mass the 
error in natural frequency is less than 0.06%, which can be an 
acceptable value. With increase in concentrated mass, error in 
natural frequency increases with one term approximation in 
candidate mode shape. 
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