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Abstract:Software estimation accuracy is amongst the biggest challenges for software developers. The most significant activity in software 
project management is Software development effort prediction. Many modelshave been proposed to make software effort estimations, but still 
no single model can predict the effort accurately. Thedemand for accurate effort estimation in the software industry is still a challenge. Accurate, 
precise and reliable estimates of effort at early stages of project development hold great importance for the management to meet the competitive 
demands of today's world. Software cost estimation is one of the most crucial tasks and predicts the effort and development time needed to 
develop a software system. It helps the software industries to manage their software development process efficiently. In this paper, we introduce 
an approach to building an effort estimation model for Open Source Software. Forthis purpose, effort data is mined from the developer's bug fix 
activities history. Ourapproach determines the actual time spend to fix a bug and considers it as an estimated effort. We propose an artificial 
neural-network-based approach to predict the amount of effort and development time of developers required for bug resolution. This paper 
investigates the use of Back-Propagation Neural networks for software effort estimation. The primary purpose of this paper is to estimate the 
software development effort using Artificial Neural-Network based techniques to improve accuracy of developers for bug resolution. 
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I.INTRODUCTION 
 
In software engineering, Effort estimation is one of the 
essential activities in the development of the software. 
Estimation of software is a difficult task in project planning 
and management process. [2]Software effort estimation one 
of the most long-term problems in software engineering. 
The software is the most expensive component in many 
computer-based systems. A huge quantity of bugs produces 
a vast difference between gain and loss during the 
estimation of effort. [3] Software effort estimation is the 
process of evaluating effort needed to produce or maintain 
software based on insufficient, unpredictable input. An 
effort is used to the total time that takes developers of a 
software development team to perform a given task. It is 
usually expressed regarding person-day, person-month, and 
person-year. This value is important as it helps in estimating 
other values, like cost or total time required to produce a 
software product appropriate for software projects. In Open 
Source Software projects development there is a mutual 
understanding among open source developers, reporters, and 
users that capably improves the product quality. However 
quality and efficiency of Open Source Software depend 
upon the bugs present in the software, so tracking of bug is 
important. Bug tracking system plays a significant role in 
the tracking of bug. 
The importance of effort estimation becomes critical during 
the early stage of the software lifecycle when the software 
details have not been reported. The effort required in 
developing a software product plays a significant role in 
determining the success or failure. Software bugs commonly 
arise during software development process. Unfound bugs 
can lead to the loss of billions of dollars. The aim of 
software maintenance is to not only improve the 
performance but also fix bugs and enhance features of the 
software, which lead to better quality software [1]. In recent 
years, software maintenance has become more challenging 
due to the increasing number of bugs in large-scale and 

complex software programs. The earlier studies [2] showed 
that a significant amount of software development cost is 
spent on maintenance and development activities. To 
regulate and avoid overlapping efforts, in large-scale open 
source software projects, project teams commonly use the 
bug tracking systems such as Bugzilla to keep track of 
reported software bugs. An essential component is the bug 
repository that stores the bug reports, source code and 
changes history i.e. when a bug is reported and assigned 
which is produced by users and developers. A bug tracking 
system is a place that keeps track of software project bugs in 
the database. The bug report is stored in bug tracking system 
where assignee of the bug fixes that bug. In open source 
software environment, the user of open source software 
often writes a "bug report" when they find a bug or come 
across a slight mistake. The developers in project teams 
depend on them to manage and fix the reported bugs. In the 
software maintenance process for large-scale software 
programs, especially bug reports, become an important 
source to help developers to resolve those bugs. 
Specifically, a user or developer can report the software bug 
in a specified format (i.e., bug report) and upload it to a bug 
tracking system such as Bugzilla. Then, a senior developer 
is assigned to fix the reported bug according to developer 
specialization and the information shown in the submitted 
report.  

 
Figure 1: Bug Lifecycle 
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During the development of any large software system, 
developers are frequently changing the source code lines of 
program files. The changes in source code are presented to 
improve the product quality, i.e., to introduce new features, 
or to fix detected faults in the software. Version control 
systems contain source code changes from which effort 
estimation systems get the data that allows for resolving 
product costs issues and release management issues. 
Besides, effort estimation also provides knowledge about 
the complexity of the product. An additional important 
feature of actual effort estimation systems is the consistent 
and exact schedule of release dates for the product. Accurate 
scheduling of release dates of product always increase the 
demand of the product and reduce the costs of the project. 
In this paper, a method is present to build an effort 
estimation model for OSS projects. For this purpose, make a 
developer activity log-book to manage the development 
activities of developers and other contributors who are 
involved in the overall process. To mine effort data we have 
to answer questions:  
1) How is effort data mined from the history of developer's 
bug-fix-activity? 
2) How is effort estimation model build using mined effort 
data? 
3) How bug-fix-activity data is use to construct the 
developer's activity log-book? 
4) How bug-fix-activity data is used to estimate developer's 
contribution and visualize collaborations? 
To tackle questions our paper helps in: 
1) Develop a novel approach to mine the effort done by 
developers from software bug repository.  
2) Building a developer’s log-book that helps in maintains 
the developer’s bug fix activity records. 
3) The log-book is maintained to get the actual time given 
by each developer f 
or bug fixing. 
Moreover, we introduce a way of visualizing the different 
aspects of the collaboration among the developers. 
 
4) We present empirical results obtained when applying the 
method for effort estimation on the Eclipse project. To 
perform, we downloaded program file bug-fix-activity data 
of developers from Eclipse’s Bugzilla repository. Bugzilla is 
a bug tracking system and very commonly used in OSS 
development. 
So far, the method which is use in the neural network for 
predicting software effort estimation is back propagation 
trained multilayered feed-forward networks amidst 
sigmoidal activation function. Artificial Neural Network 
(ANN) uses machine learning and pattern recognition 
methodology [23] to find accurate estimates for software 
development effort. It is found that ANN improves the 
performance of effort estimation by mean absolute error 
[24]. ANN (Artificial Neural Network) can discover 
relationships between the dependent and independent 
variables. There are some flaws that restrict it from being 
accepted as the standard manner in effort estimation.  Slow 
convergence is the major drawbacks of the back propagation 
learning algorithm. The sigmoid activation function used in 
its hidden and output layer units is the foremost reason for 
slow convergence. 
 

II. PREDICTION MODELS USED 
 
1. Neural Networks:  A great challenge for project managers 
and developers is predicting software development effort 
with higher accuracy. A large number of different prediction 
models (estimation models) have been proposed in past 
years. Many issues are there that should be covered in the 
choice of a prediction model, and it is likely that there is a 
need to made trade-offs in the process. The most common 
objective is to maximize the prediction accuracy. ANNs are 
massively parallel systems encouraged by the architecture of 
biological neural networks, which comprised of simple 
interconnected units. These interconnected units are known 
as artificial neurons. The neuron computes a weighted sum 
of its inputs and produces an output if the sum exceeds a 
certain threshold. This output then becomes a positive or 
negative input to other neurons in the network which are 
connected. The process lasts until one or more outputs are 
generated. The ANN is modified with random weights and 
learns the relationships contained in a training data set by 
adjusting its weights when performed with these data. 
Among the number of available training algorithms, the 
error back propagation is the most used by software metrics 
researchers. In general, the use of ANNs is to predict 
software development effort have focused mostly on the 
accuracy comparison. 
Back-propagation trained feed-forward neural networks are 
developed by first selecting an appropriate design of 
neurons. This includes how many layers of neurons will be 
used, the number of neurons in each layer, and how the 
neurons will be interconnected to each other and the precise 
nature of neurons, such as their transfer function and 
parameters for training the algorithm. Once the architecture 
has been formed, the network is trained by giving it with a 
series of inputs and the correct output from the training data. 
As with all empirically based modeling techniques, data 
should be withheld for verification and validation purposes. 
The network learns by adjusting its weights to decrease the 
error between its predicted output and actual output. This 
process of training continues until the network's ability to 
generalize as measured by its predictive performance on 
new data is ideal. 

 
Figure 2: Structure of Multilayer ANN feed forward 

network 
 
2.Logistic Regression: Logistic regression follows a 
statistical approach for examining a dataset. The result is 
determined by one or more independent variables. The 
outcome measure with a dichotomous variable (two 
desirable results ). The dependent variable is dichotomous or 
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in binary form, i.e. it only contains data coded as 1 (TRUE, 
success) or 0 (FALSE, failure) in logistic regression.   
Logistic regression is an alteration of simple regression.  
Logistic regression is used when the dependent or response 
variable is a dichotomous variable, and the independent or 
input variables are continuous, categorical, or both (Hair et. 
al. 1998). Logistic regression in software cost estimation 
provides realistic interval predictions where the cost will lie. 
Log-likelihood function is more convenient to work with as 
it is a monotonically increasing function, and the logarithm 
of function reaches its maximum value at the same points as 
the function itself. The statistical techniques like decision 
tree and logistic regression are much similar in their process 
to analyze the dataset. The Logistic Regression Equation is  

Log(p/1-p) = β0 + β1X1 + β2X2……………….. βkX
In this model, p is the probability that the dependent variable 
Y=1 and X1,X2,.. ., Xk are the independent variables 
(predictors). β0 is a constant and β1,β2,.... βk are known as 
the regression coefficients, which have to estimate from the 
data. Logistic regression calculates the probability of a 
specific event occurring. Logistic regression thus forms a 
predictor variable (log (p/(1-p)) which is a linear 
combination of the explanatory variables. The values of this 
predictor variable transform into probabilities by a logistic 
function. Such a function has the shape of an S. 
 
III.LITERATURE REVIEW 
 

k 

Software effort estimation is a fundamental component to 
software cost estimation. Software effort estimation methods 
divided into four categories—empirical, regression, theory-
based, and machine learning techniques. Empirical 
techniques comprise of analogy, function points (FP), and 
rules of thumb [7]. Regression techniques use parametric 
and nonparametric models [6]. The theory-based methods 
use the underlying theoretical considerations characterizing 
some aspects of software development processes [4]. 
COCOMO and the SLIM model are the examples of theory-
based techniques. Machine Learning (ML) techniques for 
predicting software effort involve Artificial Neural 
Networks (ANNs), Classification and Regression Tree, 
Case-based Reasoning, Genetic Algorithm (GA), Genetic 
Programming (GP), and Rule Induction (RI) [5]. Jorgensen 
[8] presents a comprehensive study on the software 
development effort. Many software cost estimation models 
have been evolved over the years. The advantage of Neural 
networks have its ability of learning and are good for 
modeling complicated nonlinear relationships; delivers more 
flexibility to corporate expert knowledge into the model. 
Neural networks technique is applied by many researchers 
to measure software development effort [9, 10, 13,14 17, 
and 18]. Many models of NN have been introduced 
[11,15,18]. Models may be grouped into two broad 
categories. First one is feed-forward neural networks where 
there is no loops in the network path take place. Another one 
is feedback neural networks that have recursive loops in the 
network path.  The most common method used in the area of 
effort estimation is the feed-forward multilayer perceptron 
with back propagation learning algorithm. An investigation 
by Samson et al. [14] practices an Albus multilayer 
perceptron to predict software effort. They work on Boehm's 
COCOMO dataset. Srinivasan and Fisher [17] consider the 

use of a neural network with a back propagation learning 
algorithm. They observed that the neural network overtook 
other techniques.  Karunanithi et al. [12] work in the use of 
the neural network in estimating software effort produced 
very precise results, but the drawback is due to resultant 
accuracy massively depends on the size of the training set.In 
[19], Gavin R. Finnie and Gerhard E. Witting proposed 
models for predicting effort using neural networks and 
Case-Based Reasoning (CBR) by comparing with various 
versions of FP-based Regression Models and Neural 
Networks(NN). The data used comprised of 299 projects 
from 17 different organizations and concluded that NN is 
done better than analogy followed by regression models. 
Their performance to a great extent dependent on the dataset 
on which they are trained. According to Gray and McDonell 
[20], NNs are the most common software effort estimation 
model-building practice used as an alternative to mean least 
squares regression. These are estimation models that can be 
"trained" using historical data to produce positive outcomes 
by automatically modifying their algorithmic parameter 
values to reduce the error between known actual and model 
predictions results. Anita Lee et. al [21] combined NN with 
cluster analysis for software development cost estimation 
and determined that it proved to be a capable approach to 
providing more accurate results on the forecasting of 
software development costs or effort. Additionally, it shows 
that the combination of NNs with cluster analysis increases 
the training efficiency and performance of the network, 
which in turn results in more accurate cost estimation than 
using just NNs. K.K. Shukla[22] presented a genetically 
trained NN on historical data. It established significant 
development in prediction accuracy as compared to both a 
regression-tree-based approach, as well as back propagation 
trained NN technique. 
 
IV.RESULTS AND DISCUSSION 
 
Effort Estimation is a complex activity that requires 
knowledge of many key attributes. At the beginning of a 
project, there is risk about these project attributes. The NNs 
have been used in various phases of software development 
right from planning phase for effort estimation to software 
testing, software quality assurance as well as reliability 
prediction. This paper presented background information on 
software project models and software metrics to be used for 
effort and cost estimation. We have predicted the software 
project effort to solve bug using Multilayer Perceptron using 
Backpropagation Algorithm and logistics regression. The 
aim is to construct a prediction model with the estimation 
accuracy of both the prediction model so that the estimated 
effort and the actual effort nearly equal. Implementation is 
done using WEKA tool. The results obtained from the 
trained neural network are compared with that of the 
Logistic Regression model. The obtained results suggest that 
the recommended architecture of Neural Network can 
precisely forecast the software development effort. The 
evaluation criteria are used to assess and compare the 
performance of the neural network model, and logistic 
regression is the magnitude of relative error (MRE). Results 
obtained are given below. 
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Figure 3: Accuracy Graphs for Eclipse Version 2.0 applied on Eclipse Version 2.1 and 3.0 
 

 
 

Figure 4: Accuracy Graphs for Eclipse Version 2.1 applied on Eclipse Version 2.0 and 3.0 

 
 

Figure 5: Accuracy Graphs for Eclipse Version 3.0 applied on Eclipse Version 2.0 and 2.1 

V. CONCLUSION 
 
From the obtained results it is concluded that Neural 
Networks results in higher accuracy than logistics regression 
for effort made by developers for bug resolution. 
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