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Abstract: This paper is concerned with transient thermoelastic problem in which we need to determine the temperature distribution, displacement
function and thermal stresses of a thin annular disc due to partially distributed heat supply, when the boundary conditions are known. Integral

transform techniques are used to obtain the solution of the problem. .
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INTRODUCTION

In 1957, Nowacki [1] studied The state of stress in a thick
circular plate due to a temperature field. Carslaw et al. [2]
has written a book on Conduction of heat in solids. Boley et
al.[3] developed Theory of thermal stresses. Nowacki [4]
studied Thermo elasticity on different solids. Marchi et al.
[5] discussed Heat conduction in hollow cylinder with
radiation. Sabherwal [6] studied An inverse problem of
transient heat conduction. Marchi et al.[7] discussed Heat
conduction in sector of hollow cylinder with radiation.
Ozisik [8] studied Boundary value problems of heat
conduction. Patel [9] discussed Inverse problems of
transient heat conduction with radiation. Roychaudhari [10]
has succeeded in determining the quasi-static thermal
stresses in a thin circular plate subjected to transient
temperature along the circumference of circular upper face
with lower face is at zero temperature and the fixed circular
edge thermally insulated..

Wankhede [11] has determined the quasi-static thermal
stresses in circular plate subjected to arbitrary initial
temperature on the upper face with lower face at zero
temperature. Ishihara et al. [12] studied Theoretical analysis
of thermoelastic plastic deformation of a circular plate due
to partially distributed heat supply. Noda et al.[13] studied
Thermal Stresses on different shapes of solid bodies. Ghadle
et al. [14] discussed An inverse unsteady- state
thermoelastic problem of a thin annular disc in Marchi-
Fasulo transform domain. Durge et al. [15] studied An
inverse steady- state thermoelastic problem of a thin annular
disc in Marchi-Zgrablich transform domain. Singru et al.
[16] discussed Steady-state thermoelastic problem of a thin
annular disc in Marchi-Fasulo transform domain. Durge et
al. [17] studied Analysis of stress functions in a thin annular
disc due to partially distributed heat supply. Khobragade et
al. [18] discussed An inverse transient thermoelastic
problem of a thin annular disc. Durge et al. [19] studied An
inverse unsteady- state thermoelastic problem of a thin
annular disc in Marchi-Zgrablich transform domain,
Gaikwad et al.[20] studied An inverse heat conduction
problem in a thick annular disc.

In the present paper, an attempt is made to study the
transient thermoelastic problem in which we need to
determine the temperature (in heating and cooling process),
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displacement and stress functions of the disc occupying the
space a<r<bh, 0<z<h with the stated boundary
condition. Here finite Fourier sine transform and Marchi-
Zgrablich transform have been used to find the solution of
problem. The numerical estimate for the temperature has
been obtained at any point of the disc and depicted
graphically.

STATEMENT OF THE PROBLEM (HEATING
PROCESS)

Consider a thin annular disc occupying the space
D:a<r<b, 0<z<h_ The initial temperature of the disc

is the same as the temp of the surrounding medium which is
kept constant for the time t=0 to t=t, the disc is
subjected to a partially distributed axisymmetric heat supply

[_Qﬂof(r’t)j at point Z=0 After that the heat supply is
removed and disc is cooled by surrounding medium.

The derived equation governing the displacement function

U (r,z,t) as (Roy Choudhary [10] )is

o’ 10U
—t=

o r 6
with U, =0 atr=aandr=b.

=1+v)a,T (2.1)

where V and &, are Poisson’s ratio and linear coefficient of

thermal expansion of the material of the disc respectively.
T(r,z,t) is the heating temperature of the disc at time t

satisfying the equation (Roy Choudhary [10]):
ca Llar 62T _loT

— 2.3
or? r 8r Forda Tkoat (23)
Subjected to initial condition
T(r,z,t) o= F(r,2) (2.4
The boundary condition
{U(r 2, +k T2 t)} 1,21 2.5)
T t
[rr(r,z,t)+k2a (r 2 )} = 1,(2) 8)
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(2.9, =—% £(r,1) @7)
[T(r,z,t)],_, = g(r,t) 2.8)
Where k & A are the thermal diffusivity and conductivity of
the material of the disc respectively, k, & k, are radiation
constant on the curved surface of the disc respectively.

The stress function o, and T, are given by (Roy

Choudhary [10]) :
10U
O =—2U——— (2.9)
r or
o2
or

Equations (2.1) to (2.10) constitute the mathematical
formulation of the problem under consideration.

SOLUTION OF THE PROBLEM

Applying finite Marchi-Zgrablich transform [5] to the
equation (2.3), one obtains

d’T  ,= 1dT
—— TN, +y =—— 1
Where
b a
t//=k—SO(k1,k2,,unb)f2—k—So(kl,kz,,una) f; 32
2 1

Now applying Fourier sine transform to the equation (3.1)
we get

TJF kpzf* :ng_(n’t)—sz_(n:t)ﬂ//l (3.3)
where,
P =+ G =T Q=T (D), Q= Mt -, _y”

The solution of differential equation (3.3) is
—* — kn?2
T (n,m,t) =e <t

t
</ [QIM 1) -QF (1) +yye®dt+C
0

Att=0, T=F(r,z2)=C=F (n,m)

Therefore
— 2
T (n,m,t) =e "
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t
{f Q1) ~Q F (1) +y)e® at'+ E*(n,m)] (34)
0

Applying inverse Fourier sine transform and inverse
Marchi-Zgrablich transform to equation (3.4) we get

T(r,z,t)= %ZZ(_Si”Cqu}—kpzt
t
X [f Q1) ~Qy F () +yy)e® '+ F(n, m’]
0

xSy (Ky, Ky, 251) (3.5)

STATEMENT OF THE PROBLEM (COOLING
PROCESS)

The temperature change T'(r,z,t) for the cooling process
satisfies the equation (Noda et.al.[13]):

T 1T T 1T

o ror o2 kot “1)
[T z.ky, =T'(r2.%)
4.2)
The boundary condition
{T’(r,z,t)+k1%(r,z,t)} = f,(z,t) (4.3)
{T’(r,z,t)+k2ﬂ'(r,z,t)} = f,(z,1) (4.9)
or r=b
[T(r,20], = f(r.1) (45)
[T'(r.z.0)],-, = g(r.t) (4.6)

Where T'(r,z,t) is the cooling temperature of the disc at
time t.

DETERMINATION OF TEMPERATURE

Applying finite Marchi-Zgrablich transform [5] to
equation (4.1) one obtains

T o= 1dT

?—ﬂnT "rl//— kE (51)
where,

b a
4 :k—so(kl’ Ky, 1qb) T _k_so(klv Ky, 1p2) Ty

2 1

Now applying finite Fourier sine transform to the equation
(5.1), one obtains

dT’

T kp?T'=Q g(nt)+Q, f(n,t)+y (5.2)
where,

mmz
p2 =#§+Q§1 v Om :T'

Ql = (_1)m+1qu’ QZ = kqm! V1= k‘7
The solution of differential equation (5.2) is given by

T'(n,m,t) =e "t
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t
x[ j Qg t)+Q, F(nt) +y/l)ekpzt'dt'+E*(n,m)] (5.3)
0

Applying inverse Fourier sine transform and inverse
Marchi- Zgrablich transform, we get

T'(r,z,t) = Zzsmq’“ kot

xb (QT(N) +Q, F () +yy)e® dt' + F(n, m)}
0

x So(Ky, Ka, 1) (5.4)
which is the required solution.

DISPLACEMENT FUNCTION

Substituting value of T(r,z,t) from equation (3.5) in

equation (2.1) one obtains thermoelastic displacement
function U(r, z,t) as

u(r.z,t) =—_2(1;V)at 3 Winfetot
C
m n n

to
| [QIM1)-Qf (1) +yy)e® at + F(n,m)

xSq (K, Ky, g 1) (6.1)
STRESS FUNCTIONS

Substituting the value of equation (6.1) in equation (2.9) and
(2.10) one obtains

= 4#(1:V)at % Z Hn S::n qmze—kpzt
n

to
g {f (QE(N,1)-Q,  (nt) +y)e® dt+ F™(n, m)]
0

| Silku k1)
r
4ﬂ(l+v)at % z Hp sin qmze—kpzt
Cn

(7.1)

Ogg =

to
{f (QI(1) - Qo F (n.1)-+yy)e® at'+ E*(n,m)]
0

xS (Ky kg, 4qT) (7.2)
SPECIAL CASE
__Qo z,-T
Set F(r,z)= 7e e (8.1)

Applying Marchi-Zgrablich transform [5] to the above
equation we get

b
F(n,z)= —%ezjre‘rso(kl, Ky, 41,r)dr

a
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Sp (kl’ k2uunr) = p(funr)[yp(kluuna) + yp(kZHUnb)]

- yp (,unr)[‘] p (kluuna) +J p(anUnb)]
And J,(ur) and y,(ur) are Bessel’s function of 1" and
2" kind respectively

The eigen values ff, are the positive roots of the
characteristic equation

Jo(Ky, 1) + Yo (Ky, )] = 3o (K, i) Yo (K, 2)] =0

Solving above we get

F(n2)= Q° Q0 626721 [0 (12) o (4202) + Yo (41a5) o (11D)]

I?(n,z)——QO e’e ®u,D, (8.2)
Where

D, =Jo (;Una) Yo (,una) +Yo (:unb)‘JO (,unb)

Applying Fourier sine transform to above equation we get

I?*(n,m)=—Q° e ?u, D, I (Sin%jdz

F (n m)_ QO e—azz m:un 2n2(1 ( 1)meh)

(8.3)
Now set

g(r,t)=- QO ~0 gtgrgh (8.4)

Applying Marchl—Zgrainch transform to above equation, we
get

g(nt)=— Qoe e"e s, D, (8.5)
Also set

_ Qy ot r
f(r,t)= 7e e (8.6)

Applying Marchi-Zgrablich transform to above equation we
get

fnt)=-2

Tf’e*t'e*a 1,0, (8.7)
Thus the final expression for temperature distribution is

T(r,z,t)= zzsmqmz o't
J.(Ql(QO e—t ehe alun nj QZ(QO e—t ehe aﬂnDn]‘H//ljekpZYdt'
0
Qoﬂhe mu,D n m h
e
AT 0
x So(Ky, Kz, 44q1)

U(r.z.t) = 2(1+v Zzsmqmz —kp’t

(8.8)

g {f (QI(1) - Qo F (1) +yy)e® '+ F(n, m)]
0
xS (ky, Ky, 1o1) (8.9)
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u(1+v)a Z/un sin OmZ —kp t

x j(Qlﬁ(n,t') ~Qp (1) +y)e® ot + F(nm)
0

,(kl' kz Hnl) (8.10)

1+V Hn SQO —kp t
Opo =

x j(ng(n,t') ~Qf (0.t +y)e® '+ F(n,m)

xSg(ky Ky, gty T) (8.11)
NUMERICAL RESULTS

Set
kl =0.2, k2 =02, h=025ft, =314, a=1ft,b=21t,t =2
in seconds, k=0.5

SiNQmZ_-05p
T(r,z,t)=2 —MmTe7ePp
(r.2,1) ZZ :
I[Q (Qo e tee Zﬂn ”j QZ(QO S ZlunDnj""//l]ekpZt/dt'
0

{ QO 314 he ZZ m/‘n n 1)m h)}
1+m? 314

x$9(0.2,0.2, 11,)

ur.zt) :—‘2(1;")"’“ )Y, Holalg
m n n

(9.1)

| [(@EM1)-Qf () +yr)e® at + F (n,m)

xSq (Ky, Kz, 42nT) 9.2)
Where,
b
W:k—so(k1’k2,3ﬂn)f2 ———So (kg kg, p0) fy
2 1
p?=ph +qn Gy = 075" L Q= ()™ gk, Q, =Kap, vy =057
Au(l+v)a, Hn SINQnZ__0.25p%
(o h XZ Cn i

to
«| [ QT -Q,F (1) +pp)e™ at + F*(nm)

y So (kg kg, p,r) 9.3)
r

4u+v)a, zﬂnsm% A-0.25p%
h c,

Ogg =
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| [@aM.1)-QF (nt)+yy)e® at + F(n,m)
xS (Ky, Ky, 12,T) (9.4)

MATERIAL PROPERTIES

The numerical calculation has been carried out for an
Aluminum (Pure) annular disc with the material properties as,
Density p =169 Ib/ft3

Specific heat = 0.208 Btu/ IbOF

Thermal conductivity K = 117 Btu/(hr.ftOF)

Thermal diffusivity ¢ = 3.33 ft2/hr

Poisson ratio v =0.35

Coefficient of linear thermal expansion e, = 12.84 x10°° 1/F
Lame constant x = 26.67

DIMENSIONS

The constants associated with the numerical calculation are
taken as

Radius of disc a = 1.5ft

Radius of disc b = 2ft

Height of disc h = 0.25ft

CONCLUSION

The temperature distribution, displacement function and
thermal stresses at any point of the disc have been
determined when the other boundary condition are known
with the aids of finite Fourier sine transform and Marchi
Zgrablich transform techniques.

The expression are obtained in the form of infinite series
and are represented graphically. Any particular case of
special interest can be derived by assigning suitable values
to the parameters and functions in the equation.

The results presented here will be more useful in
engineering problems particularly in the determination of
the state of strain in the disc constituting the foundation of
container for hot gases or liquid in foundation for furnaces
etc.
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Graph 1. Temperature distribution vs. radius

1209



N W Khobragade et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1206-1210

t=0.
t=1.
t=1.

5.00E-01 T
450E-01 +
4.00E-01 -
© 3.50E-01 -
3.00E-01 1
2.50E-01 1
2.00E-01 -
1.50E-01 A
1.00E-01
5.00E-02 1

0.00E+00 : : : |
0.00 0.25 050 r 0.75 1.00

Graph 2. Radial stresses vs. radius

1.50E400 + t=0.
t=1.
1.00E+00 + t=1.5
t=2.0
5.00E-01 +
20.00E+00 : : Z § ' '
© 0 0 0
-5.00E-01 +
-1.00E+00 1
r
-1.50E+00 +

Graph 3. Tangential stresses vs. radius
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