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Abstract: Given a set P  of n  points in two dimensional plane. In this paper we study the minimum enclosing square problem. An O(n2)  time 

and space algorithm is proposed to locate a minimum enclosing axis-parallel square (Sk) that encloses at least k  ( nk ≤≤1 ) points of P .  
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I. INTRODUCTION 

The logistics for distribution of product or services has 

been a subject of increasing importance over the years, as part 

of the strategic planning of both public and private enterprise. 

Decisions concerning the best configuration for the 

installation of facilities within convex objects in order to 

enclose demand requests are the subject of a wide class of 

problems, known as enclosure problem. In facility location 

[14, 18, 19], enclosure problem computes a subset P′  of a 

finite set of demand points },,,{= 21 mpppP �  (i.e. P′  

P⊆ ) to be enclosed by convex objects 

},,,{= 21 mcccC �  such that facility if  is placed within 

convex object ic , mi ≤≤1  and any demand ip , 

ni ≤≤1  may get service from at least one facility jf , 

mj ≤≤1  maintaining some optimality criteria. 

 

Enclosure problem is an important area of algorithmic 

research in computer science community which arise in 

facility location, material cutting, geometrical shapes 

inspection, material salvage, and antenna coverage and are 

well studied in the operation research literature [3] and 

computational geometry [2, 17]. In some cases, the enclosing 

object is orientation-invariant, that is, the region bounded by 

the object remains same under rotation (for example circle). 

However, if the enclosing object is em orientation-dependent, 

then it sometimes becomes more difficult to compute the 

optimal orientation over all possible orientations. In facility 

location, a classical problem in the domain of enclosure 

problem is location set covering problem (LSCP). The LSCP 

[10] determines the minimal number of facilities that are 

necessary to attend all clients, for a given covering distance. 

Owing to formulation restrictions, maximum covering 

location problem (MCLP) model [14] does not consider the 

individual demand of each client. In addition, the number of 

needed facilities can be large, incurring high installation and 

recurring costs. An alternative formulation considers the 

installation of a limited number of facilities, even if this 

amount is unable to address the total demand. In this 

formulation, the condition that all clients must be served is 

relaxed and the objective is changed to locate p  facilities 

such that all the maximum part of the existing demand can be 

addressed, for a given covering distance. In  constrained 

MCLPs, the location of each facility is restricted to some 

feasible region. In the  unconstrained model, there is no 

restriction on the location of facilities. The real world 

applications always imposes some spatial constraints on the 

corresponding problem, whereas their unconstrained 

counterparts are rather of theoretical interest. It is noteworthy 

that sometimes the solutions of both constrained and 

unconstrained versions may coincide, i.e, solution of 

unconstrained version falls in one of the feasible regions of 

the constrained problem. As solution of a unconstrained 

problem P  may give some crucial insight to the constrained 

version of P , the study of former is of great importance. 

Maximum covering location models can differ in their 

objective function, the distance metric applied, the number 

and size of the facilities to locate and several other indices. 

Depending upon the specific application, inclusion and 

consideration of these indices in the problem formulation will 

lead to very different maximum covering location models. 

In this paper we study minimum enclosure problem that 

computes a minimum area axis-parallel square enclosing at 

least k  points of P . A square (rectangle) is said to be a k

- square  ( k -rectangle) if it encloses exactly k  points of 

P  and there does not exist another square (rectangle) kS ′  

having area less than that of kS . The problem of computing 

k - square  and k - rectangle  are studied by different 

computer scientists during last decades [4, 1, 6, 5, 9, 7]. 

Interested readers can have a look on different existing 

algorithmic complexity results in the work of Das et al. [4] 

for details. 

Another motivation of studying different types of 

enclosure problems comes from pattern recognition [12, 13], 

where essential features are represented by a point set, and 

the objective is to identify clusters [15] containing at least k  

number of features. In this paper cluster region is the region 

enclosed by an axis-parallel square or rectangle. 

Deterministic (also known as polynomial-time) as well 

as probabilistic algorithms can be developed using differents 

optimization techniques [20, 21, 22]. Deterministic lgorithms 

are most often used if a clear relation between the 

characteristics of the candidate solutions and their utility for a 
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given problem exists. Then, the search space can efficiently 

be explored using different techniques such as divide and 

conquer scheme. If the relation between a potential solution 

and its Fitness [23] are not so simple or too complicated, or 

the dimensionality of the search space is very high, it 

becomes difficult to design a deterministic algorithm to solve 

a problem. For this type of problem, it not possible to frame 

an exhaustive enumeration of the search space even for 

relatively small problems. Then, probabilistic algorithms 

come into action. The initial work in this domain which now 

has become one of most important research area in 

optimization was started long time ago. An especially 

relevant family of probabilistic algorithms are the Monte 

Carlo6-based approaches, Evolutionary Computation (EC) 

[24], Memetic Algorithms, Random Optimization [25], Tabu 

Search (TS), Genetic Algorithms (GA) [26] etc. 

We use sophisticated tools from computer science, 

computational geometry and combinatorial optimization. The 

approach to solve this problem does not require more than the 

standard geometric insight that has been extensively studied 

in computational geometry literature. In Section 2, first some 

basic results are developed to propose a deterministic 

algorithm to find kS . Then an )(
2

nO  time and space 

algorithm is presented to find kS . We make concluding 

remark in section 3. 

II. BASICS 

Let },,{= 21 npppP �  be the set of given points in 

the plane. Our objective is to locate k -square kS . Without 

loss of generality, we describe our method under general 

position assumptions for the points in P , i.e., (i) no two 

points lie on a vertical line, and (ii) no three points are 

collinear. We denote by )( px  and )( py  the x

-coordinate and the y -coordinate of any point p  

respectively. The size of a square is denoted by the length of 

it's side. Let 1L  and 2L  be the pairs of opposites sides of 

kS . We have the following observation. 

Observation 1  Each side in 1L  or each side in 2L  of 

the k -square kS  must contain at least one point of P .  

    

 

 

   

 

 

                      

  (a) Type-1                    (b) Type-2 

  

Consider a set of axis-parallel squares whose each 

vertical side contains at least one point of P . We can 

generate at most   such squares by considering all pair of 

points ip  and Pp j ∈  lying on the vertical sides of the 

square. Similarly a set of axis-parallel squares can be 

generated whose each horizontal sides contain a point of P . 

From observation 1, kS  must belong to these two sets and 

can be obtained by locating a minimum sized square in this 

set containing at least k  points. The problem of locating 

kS  is equivalent to computing an axis-parallel square of 

minimum area among the set of squares whose vertical sides 

or horizontal sides pass through ip  and Pp j ∈ , ni ≤  

and nj ≤  and it contains at least k  points from P .  

The number of such squares will be 

)(=
2

1)( 2nO
nn −

. Using brute force algorithm we can 

determine the squares from the set that contain at least k  

points from P ; among them the square with the minimum 

area is the desired solution. This naive algorithm requires 

)( 3
nO  time and )(nO  space. To expedite our search 

process we can use divide and conquer method to solve our 

problem. At each branching point we solve a decision 

problem. Depending upon the solution to that decision 

problem we choose our search path. For each optimization 

problem, there is a corresponding decision problem that asks 

whether there is a feasible solution for some particular 

measure. For example, consider graph coloring problem for a 

graph G that computes the minimum number of colors 

required to make the graph G colorable. The corresponding 

decision problem of graph coloring problem would be “Is the 

graph G is k colorable?”. This problem can be answered with 

a simple “yes” or “no”. For computing kS the decision 

problem can be described as follows: “given a length l , does 

a square of size l  enclose at least k  points of P ?’’ This 

decision problem motivates us to use the following result.  

Result 1 [8, 16] Given a set P  of n  points in the 

plane we can compute an axis-parallel square of fixed size 

containing maximum number of points from P  in 

)log( nnO  time using )(nO  space.  

Let us define Max - )(αSq  as an axis-parallel square 

of size α  that covers maximum number of points from P . 

Assume that the sequence < nppp ,,, 21 � >  is in non 

decreasing order of the x -coordinate values. In first pass, 

we compute the horizontal distances 

ijpxpx ij >)),()(( −  for each pair of points ip  and 

Pp j ∈  and store these 
2

1)( −nn  distances in an array 

Φ . Thus the array Φ  contains the following sequences of 

vertical distances and the total number of horizontal distances 

is 
2

1)( −nn .   

)()(,),()(),()(= 113121 pxpxpxpxpxpx n −−−Φ �  

)()(,),()(),()(= 224232 pxpxpxpxpxpx n −−−Φ �

�  

)()(,)()(),()(= 21 iniiiii pxpxpxpxpxpx −−−Φ
++

�

�  

)()(),()(= 2212 −−−−
−−Φ nnnnn pxpxpxpx  

)()(= 11 −−
−Φ nnn pxpx  

We use binary search in the array Φ  to locate 

minimum length square enclosing k  points. Observe that 
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the vertical distances array Φ  is in non decreasing order. 

This is very required as binary search is used as a prune and 

search tecnnique to locate kS .  Compute the median λ  of 

the elements in  and locate the Max - )(λSq  using Result 

[8]. Distance λ  partitions the array in two halves. Right half 

contains the elements greater than or equal to λ . In case the 

number of points enclosed by Max - )(λSq  is less than k

, the elements in the left half of Φ  lesser than λ  are not 

the candidates for generating kS . So for each step of the 

binary search, half of the elements of the array Φ  are 

discarded. The running time T  of this algorithm is 

governed by the time required to compute the median λ  

and the time required to locate the Max - )(λSq . Observe 

that )( 2
nO  time is required to compute the median from a 

set of 
2

n  elements and locating Max - )(λSq  needs 

)log( nnO  time (See Result 2). Theforefore, the time 

complexity of the proposed algorithm is governed by the 

following recurrence relation. 

)log()(/2)(=)( 222
nnOnOnTnT ++  

)(= 2
nO  

Therefore computation of kS  with at least one point on 

each of its left and right side requires )( 2
nO  time and 

space. 

In second pass, similar technique (i.e. binary search) is 

used to compute kS  with at least one point on each of its top 

and bottom side. For this, let <
nppp ′′′ ,,, 21 � >  be the 

elements of P  in non decreasing order of their y

-coordinate values. Here binary search algorithm is also used 

on the vertical distances ijpypy ij >)),()(( ′−′  for each 

pair of points ip′  and Pp j ∈′ . In this case the vertical 

distances are expressed by the following sequences.   

)()(,),()(),()(= 113121 pypypypypypy n
′−′′−′′−′Ψ �

)()(,),()(),()(= 224232 pypypypypypy n
′−′′−′′−′Ψ �

�  

)()(,)()(),()(= 21 iniiiii pypypypypypy ′−′′−′′−′Ψ
++

�

�  

)()(),()(= 2212 −−−−
′−′′−′Ψ nnnnn pypypypy  

)()(= 11 −−
′−′Ψ nnn pypy  

Like first pass, observe that an array that contains all 

these vertical distances is also in non decreasing order.  

In each pass, we keep the smallest area square enclosing 

at least k  points of P  found so far. Finally, the minimum 

area square containing at least k  points of P  is reported. 

We thus have the following result.  

Theorem 1 Given a set P  of n  points in the plane 

and an integer nk ≤ , the smallest area axis-parallel square 

containing at least k  points of P  can be located in 

)(
2

nO  time and space.  

  

III. CONCLUSIONS 

Given a set P  of n  points in two dimensional plane 

and an integer )( nk ≤ , we have considered the enclosure 

problem of finding a minimum area axis-parallel square that 

contains at least k  points of P . A k  point enclosing 

square (rectangle) kS  is said to be a k - square  ( k -

rectangle ) if there does not exist another square (rectangle) 

having area less than that of kS  and containing k  points 

from P . In Section 3 an )(
2

nO  time and space 

algorithm is presented to find kS . 
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