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Abstract: As open source software systems are becoming larger and more complicated, the task of bug detection and fixing to improve the 
performance of the software is also getting more complex, time consuming and inefficient. To improve the quality and efficiency of the 
software, developers allow users to report bugs that are found by them using bug tracking system such as Bugzilla. In Bugzilla users specify the 
details of the bug, such as the description, the component, the version, the product and the severity. Depending on this information the 
developers assign the priority levels to the reported bugs. The task of prioritizing the bug reports is manual, therefore it is time-consuming and 
inconsistent. In this dissertation, Neural Network technique is used for developing prediction models for five different versions (2.0, 2.1, 3.0, 
3.1, and 3.2) of Eclipse that will assign the priority levels based on the information provided in each bug report. The features that potentially 
affect the priority of a bug are temporal, textual, author-related, severity, product and component. Collected dataset is used to train and test the 
classification algorithms. ROC and F-measure is used to interpret the results. 
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1. INTRODUCTION 
 
In the present scenario, there are situations where the size of 
the software is increasing at an exponential rate and that 
implies complexity too is growing. As a result, defects enter 
the software and lead to functional failures. Furthermore, the 
defects that are initiated by the software are of varying 
severity levels. There are various bug tracking systems that 
contain detailed information about these defects along with 
their ID’s and associated severity level. These defects range 
from mild to catastrophic based on their effects, wherein 
catastrophic defects are most severe defects and may lead 
the entire system to go to a crash state. Hence, the defects 
introduced in the software should be assigned priority levels 
which will help in investigating bug reports easily by their 
priority.  
There are considerable amount of resources that are 
involved in software improvement. The task of assigning 
priority to reported bugs is by and large a manual one and 
accrues the cost of billions of dollars every year. Still, many 
software systems are released with defects due to lack of 
testing. Therefore, to improve and address upcoming 
versions, developers need to get feedback on defects that are 
present in released systems [1]. Thus, depending on the 
complexity of the software system, developers allow end 
users to report defects using bug reporting systems such as 
Bugzilla, Jira et al. It is a standard practice in both open 
source software development and closed source software 
development. Bug tracking systems help in continuous 
monitoring and reporting of bugs [2]. Machine learning 
techniques are just the right kind of algorithms that make the 
task of bug prediction and classification straightforward and 
efficient. Further, to enhance the efficiency of a bug 
classifier by using feature extraction techniques that will 
help in supplying the refined information to the machine 
which is achieved by using text mining algorithms. Text 
mining algorithms extract keywords from bug reports by 
picking up high importance words- these processed words 
along the original bug reports are used to improve the 
accuracy of a classifier. Our approach predicts the priority 
level of bug reports from Bugzilla using text classification 

method considering several factors/fields that affect the 
priority of a bug report. These factors are as follows [3]: 

• Temporal: other bug reports that are reported at the 
same time as the bug report. 

• Textual: the textual component of the bug report. 
• Author: the author of the bug report. 
• Related-report: related bug reports. 
• Severity: the estimated severity of the bug. 
• Product: the affected product in which the bug is 

invoked.  
 
2. TEXT PRE-PROCESSING 

 
The standard text pre-processing techniques are specifically 
used to extract the textual content of data into a set of 
features that are meaningful. These methods include 
tokenization, stop word removal, and stemming [4]. 
A. Tokenization: Tokenization is a process that is used to 
separate tokens from a textual document by splitting the text 
into tokens.  
B. Stop-Word Removal: Stop words are removed as they 
might reduce the effectiveness of machine learning or 
information retrieval solutions due to their skewed 
distributions. There is a significant portion of such stop 
words including “am”, “are”, “is”, “I”, “he”, etc. These stop 
words should be removed from the set of tokens that are 
extracted through tokenization (in the previous steps). 
C. Stemming: There are many forms of words; in English, 
grammatical rules dictate if a root word appears in singular, 
plural, present tense, past tense, future tense, or many other 
forms. Words beginning from the same root word yet are not 
identical with one another are semantically related, for 
example, in “write”, “writes” or “writing”. Stemming tries 
its best to reduce a word to its ground level form. For 
example, “usability”, “usable”, and “use” would all be 
reduced to “use”. In this work, Porter’s stemming algorithm 
[5] is used to process the text and is used many prior studies, 
for instance, [5] , [6] and [7]. 
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3.  LITERATURE SURVEY 

 
Till date, there are very few studies on finding such 
relationship taking the severity of faults into account. The 
most popular study in the field of fault severity has been 
done by the authors [8]. They analysed the performance of 
models at three levels of severity such as high, medium and 
low severity faults and concluded that the model predicted at 
high severity faults is less accurate as compared to the 
models predicted at other severities. It was summarised that 
the models predicted using DT and ANN methods are better 
than the models predicted using LR method. Also, it was 
seen that the metrics such as CBO, WMC, RFC and SLOC 
are necessary for the faults at all the severity levels. Support 
Vector Machine (SVM), cascade correlation network, group 
method of data handling polynomial method, gene 
expression programming) [9]. AUC calculated the 
performance from a ROC Curve. Many researchers use 
ROC curves for the modules for predicting fault-prone or 
not fault-prone [10]. 
The work was done [10] is similar to the work of Menzies 
[11]. Permata have also developed a model for the 
assignment of the bug severity level. They have used the 
same pre-processing tasks (tokenization, stop words removal 
and stemming) and feature selection method, but, have used 
SVM as their classification method.  
In this study, [12] the authors automatically assign priorities 
to Firefox crash reports in Mozilla Socorro server based on 
the frequency and entropy of the crashes. When Firefox 
fails, crash reports are automatically submitted to the 
Socorro server, and it contains a stack trace and relevant 
information about the environment to help developers debug 
the crash. In the study, the authors investigated bug reports 
that are manually submitted by users.These reports are 
different from a crash report, a bug report contains natural 
language descriptions of a bug and might not include any 
stack trace or environment information. They employ a text 
mining based solution to assign priorities to bug reports. 
Some studies [13] group bugs into different categories. 
Huang et al. propose a text mining solution to categorising 
bug reports as either capability, security, performance, 
reliability, requirement, or usability related bugs. 
In the year 2012, [14] Tian also predicted the severity of bug 
reports by using the nearest neighbor approach to predict 
fine-grained bug report labels. Different from work by 
Menzies which analyses a collection of bug reports in 
NASA, Tian applies the solution to a larger collection of 
bug reports consisting of more than 65,000 Bugzilla reports. 
Severity levels are given by users, while priority levels are 
assigned by developers. Severity levels relate to the impact 
of the bug on the software system as understood by users 
and priority levels relate to the importance bug reports that 
are received [15]. Tian [14] used automatically detects and 
analyse bug reports, which had been reported in the past 
seven days with severity levels, and taking these reports in 
consideration severity levels to newly reported bug reports 
are assigned. They determine the similarity between used 
duplicate bug reports with relative information and features. 
This similarity in information helps in assigning the severity 
levels accurately and quickly. 
In the area of similar bugs, a study is presented by [16]. 
Some research in the field of bug triaging support by 

recommending appropriate developers to fix a particular 
bug. Levenberg-Marquardt (LM) algorithm based on neural 
network predicts the software defects at an early stage of the 
SDLC is described by [17]. They use data available on the 
PROMISE repository of empirical software engineering 
dataset. The dataset uses the CK (Chidamber and Kemerer) 
[18] metrics. The study concludes  that the Levenberg-
Marquardt (LM) neural network based algorithm gives 
better accuracy (88.09%) as compared to every polynomial 
function-based neural networks (pF-NNs), linear function-
based neural network (lf-NN) and quadratic function- based 
neural network (qf-NN) respectively. A defect prediction 
model using data mining. Gayathri [19] worked on an 
enhanced Multilayer Perceptron, Neural Network technique 
are proposed, in which comparative analysis of modelling of 
defect proneness predictions using a dataset of different 
metrics from NASA MDP (Metrics Data Program) was 
performed.  
CART algorithm and Bayesian logistic regression. Kapila & 
Satwinder, in their study, use Bayesian inference with six 
individual software metrics for early prediction of the 
software fault. They use Bayesian inference model to 
identify a posterior probability of fault occurrence [20].  
In [21] an approach is described for static reliability 
modelling, and for modelling of software reliability from 
software complexity regarding the predictive quality and the 
quality of fit. The performance is compared with more 
traditional regression modelling techniques.The work 
concluded that the neural network model is superior as 
compared to traditional regression-based techniques and had 
a less standard error.  
Other tasks of Tian [14] presented an automated approach 
with the help of machine learning in suggesting a priority 
level by information in bug reports. They consider 
multifactor temporal, textual, author, related reports, product 
and severity, as potential factors, which affect the priority 
level of reported bug reports. They use these factors as 
features to train a model with the help of a classification 
algorithm (thresholding and linear regression), which can 
perform well in ordinal class labels and imbalanced data. 
They conducted their experiment on more than 100,000 
reports collected from Eclipse. This experiment shows an 
improvement of 58.61% regarding average F-measure by 
outperforming baseline approach. [22] Extended their 
previous work by using extracted features to train a 
discriminative model via a new classification algorithm 
(linear regression) and their framework named DRONE. 
The new work provides a way to handle ordinal class labels 
and imbalanced data. They managed to improve their work 
on 100,000 bug reports from Eclipse regarding F-measure 
by 209%, which outperform baseline approach. 
In addition to this, [23] presented an approach, in which 
they  implement an improved method of detecting duplicate 
bug reports using the textual similarity features and binary 
classification. They used a total of 25 textual features, then 
run their classification method to categorise pairs of bugs 
into two types: duplicate and non-duplicate. They used new 
textual elements, derived based on text similarity measures, 
and trained several binary classification models. After 
training the models, they tested their work on bug reports 
collected from Eclipse, OpenOffice and Mozilla to analyse 
the effectiveness of the improved method. They also 
compared it with the current state of- the art and highlighted 
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the similarities and differences. They were able to achieve 
an improvement of 6.32% in duplicate bug report detection 
even without considering context-based features. 
 
4. RESEARCH METHODOLOGY 

 
Neural Network MLP (Multilayer Perceptron) 
A neural network consists of a pool of simple processing 
units which communicate by sending signals to each other 
over a large number of weighted connections. Each unit 
performs a relatively simple job: receive input from 
neighbors or external sources and use this to compute an 
output signal which is propagated to other units. Apart from 
processing, a second task is the adjustment of the weights. 
The system is inherently parallel in the sense that many 
units can carry out their computations at the same time. 
Within neural systems, it is useful to distinguish three types 
of units: input units which receive data from outside the 
neural network, output units which send data out of neural 
network, and hidden units whose inputs and output signals 
remain within the neural network.  

 
Fig. 1: General Architecture of Neural Network 

 
The figure shows general architecture of neural network 
with one input, hidden and an output layer.  
Mathematically, 
Netk = W1kX1 + W2kX2 + ….. WmkXm + b
Sigmoid Activation Function: 

k 

The backpropagation algorithm focuses on the minimum 
error function in weight space. The error function is 
minimised by the combination of weights that are solutions 
of the learning problem. The activation function is used in 
perceptrons, because the composite function produced by 
interconnected perceptrons is discontinuous, and therefore 
the error function too. One of the most popular activation 
functions for backpropagation networks is the sigmoid, 
defined by the expression 

Sc(x) =  
The constant c can be selected arbitrarily and its reciprocal 
1/c  know as the temperature parameter in stochastic neural 
networks. The shape of the sigmoid changes according to 
the value of c, as can be seen in Figure 2.  

 
Fig. 2 Three Sigmoids for c=1, c=2, c=3 

The graph shows the shape of the sigmoid for c = 1, c = 2 
and c = 3. A higher value of c bring the shape of the sigmoid 
closer to that of the step function, and when c! 1 the sigmoid 
converges to a step function at the origin.  
Naïve Bayes Classifier   
Naïve Bayes classifier is a simple probabilistic classifier 
based on applying Bayes' theorem (from Bayesian statistics) 
with strong (naive) independence assumptions. A more 
descriptive term for the underlying probability model would 
be "independent feature model". In simple terms, a Naïve 
Bayes classifier assumes that the presence (or absence) of a 
particular feature of a class is unrelated to the presence (or 
absence) of any other feature [28]. Depending on the precise 
nature of the probability model, Naïve Bayes classifiers can 
be trained very efficiently in a supervised learning setting. 
In many practical applications, parameter estimation for 
Naïve Bayes models uses the method of maximum 
likelihood; in other words, one can work with the Naïve 
Bayes model without believing in Bayesian probability or 
using any Bayesian methods [29].  
 
5. EVALUATION MEASURES 

 
Precision, recall, and F-measure, which are commonly used 
to measure the accuracy of classification algorithms, are 
used to evaluate the effectiveness of MLP and Naïve Bayes 
algorithms. In this work, precision, recall, and F-measure 
are used to evaluate the results for each of the priority 
levels. The same measures are used in the experiments of 
Menzies and Marcus to evaluate the results of Severis [11].  
Mathematically, precision, recall, and F-measure can be 
represented as below:  

1. Precision = TP \ FP+TP     
2. Recall = TP \ TP + FN 
3. F-measure = 2 * Precision * Recall \ Precision + 

Recall 
 

Validation Method Used 
In this section, for all the versions, both the algorithms are 
tested by performing 10-fold cross-validation tests with 10 
repetitions, which means 100 runs for each combination. 
The process for cross-validation is chosen for this work 
because it is a standard that guarantees a stratified sampling 
of the dataset [24], [25]  and reduces overfitting [26]. The 
performance values such as precision, recall, F-measure, 
area under ROC are produced with each run.  
 
6. DATA COLLECTION 

 
Eclipse projects focus on building extensible frameworks, 
tools and runtimes for building and managing software 
throughout its lifetime. It has many products and 
components. The versions that are selected for this work are 
2.0, 2.1, 3.0, 3.1, and 3.2. There are five main products of 
Eclipse from which only three are selected for data 
collection process, namely JDT, PDE and Platform. The 
Bugzilla database contains all errors (bugs) that have been 
found in the lifetime of the Eclipse project with the detailed 
information that includes the release number, bug severity, 
summary, long description, priority, status, changed the 
date, reported date, the name of the reporter, etc. 
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7. RESULTS AND DISCUSSIONS 
 

In this section, the results of various experiments carried out 
during the research are listed and discussed. The listed 
experiments were performed with the objective of 

classifying the priorities of bugs using MLP and Naïve 
Bayes. The tests have been performed on five versions of 
Eclipse project viz 2.0, 2.1, 3.0, 3.1, 3.2.   
Table 1: Results of MLP and Naïve Bayes for 10-fold cross-
validation 

Versions Algorithms Priority Precisi
on 

Recall F-measure ROC Algorithm Priori
ty 

Precisio
n 

Recall F-measure ROC 

 
 
2.0 

 
 
MLP 

P1 0.743 0.491 0.591 0.895  
 
Naïve Bayes 

P1 0.743 0.491 0.591 0.895 
P2 0.742 0.641 0.688 0.911 P2 0.742 0.641 0.688 0.911 
P3 0.944 0.981 0.962 0.986 P3 0.944 0.981 0.962 0.986 
P4 0.523 0.246 0.335 0.876 P4 0.523 0.246 0.335 0.876 
P5 0.600 0.851 0.703 0.924 P5 0.600 0.851 0.703 0.924 

 
 
2.1 
 

 
 
MLP 

P1 0.200 0.033 0.056 0.597  
 
 
Naïve Bayes 

P1 0.200 0.033 0.056 0.597 
P2 0.725 0.458 0.561 0.809 P2 0.725 0.458 0.561 0.809 
P3 0.780 0.933 0.849 0.844 P3 0.780 0.933 0.849 0.844 
P4 0.000 0.000 0.000 0.514 P4 0.000 0.000 0.000 0.514 
P5 0.015 0.015 0.023 0.595 P5 0.015 0.015 0.023 0.595 

 
 
 
3.0 

 
 
 
MLP 

P1 0.382 0.153 0.219 0.807  
 
 
Naïve Bayes 

P1 0.382 0.153 0.219 0.807 
P2 0.534 0.482 0.507 0.785 P2 0.534 0.482 0.507 0.785 
P3 0.876 0.913 0.894 0.913 P3 0.876 0.913 0.894 0.913 
P4 0.333 0.707 0.453 0.830 P4 0.333 0.707 0.453 0.830 
P5 0.000 0.000 0.000 0.868 P5 0.000 0.000 0.000 0.868 

 
 
3.1 

 
 
MLP 

P1 0.000 0.000 0.000 0.742  
 
 
Naïve Bayes 

P1 0.000 0.000 0.000 0.742 
P2 0.613 0.795 0.692 0.860 P2 0.613 0.795 0.692 0.860 
P3 0.916 0.969 0.942 0.948 P3 0.916 0.969 0.942 0.948 
P4 0.188 0.053 0.082 0.720 P4 0.188 0.053 0.082 0.720 
P5 0.455 0.247 0.320 0.789 P5 0.455 0.247 0.320 0.789 

 
 
3.2 

 
 
MLP 

P1 0.736 0.804 0.768 0.907  
 
Naïve Bayes 

P1 0.736 0.804 0.768 0.907 
P2 0.692 0.686 0.689 0.809 P2 0.692 0.686 0.689 0.809 
P3 0.872 0.895 0.883 0.951 P3 0.872 0.895 0.883 0.951 
P4 0.000 0.000 0.000 0.515 P4 0.000 0.000 0.000 0.515 

 
It can be easily inferred from the above table that the model 
performs efficiently in classifying the priority P3. Priority 
P3 is the most abundant type of priority that has been found 
in the bug reports. The classifier also performs best in 
classifying P3 with an average precision of about 79 percent 
and a recall of about 80 percent (in Eclipse 2.0). The MLP 
based model is also performing efficiently in performing the 
classification of different priorities with ROC varying 
around 87.6 percent to 98.6 percent. The ROC values in this 
range denote good to excellent perceptiveness.  
It can be easily inferred from the above table that the model 
performs efficiently in classifying the priority P3 and P5. 
The classifier also performs best in classifying P3 with an 
average precision of about 82.7 percent and a recall of about 
80.9 percent (in Eclipse 2.0) which is 1.5 to 3 percent better 
as compared to MLP. The Naïve Bayes based model is also 
performing efficiently in performing the classification of 
different priorities with ROC varying around 89 percent to 
98 percent. The ROC values in this range denote good to 
excellent perceptiveness. Therefore, it can be concluded that 
the results of both the algorithms are efficient for predicting 
bug priorities.  
 
8. CONCLUSION AND FUTURE WORK 

 
Bug reports of three components of Eclipse are chosen for 
this research, four main processes performed in experiments 
are: dataset acquisition, pre-processing, feature selection and 
classification. Then classification is done using MLP and 
Naïve Bayes and basis of precision and recall their 
performance is compared. The prediction models are 
developed with the 10-fold cross-validation. It was evident 
from the results that the model has performed very well in 
predicting the priorities.  

The research used only five versions and three products of 
Eclipse project for bug priority prediction. Therefore in 
future, other products and versions of Eclipse, Mozilla et al 
may be used and cross component could be applied by 
creating a global dictionary of Eclipse. 
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