
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1315

ISSN No. 0976-5697

Neural Network Based Bug Priority Prediction Model using Text Classification Techniques

Pooja Awana Choudhary
Centre for Computer Science and Technology

Central University of Punjab
Bathinda, India

Dr. Satwinder Singh
Center for Computer Science and Technology

Central University of Punjab
Bathinda, India

Abstract: As open source software systems are becoming larger and more complicated, the task of bug detection and fixing to improve the
performance of the software is also getting more complex, time consuming and inefficient. To improve the quality and efficiency of the
software, developers allow users to report bugs that are found by them using bug tracking system such as Bugzilla. In Bugzilla users specify the
details of the bug, such as the description, the component, the version, the product and the severity. Depending on this information the
developers assign the priority levels to the reported bugs. The task of prioritizing the bug reports is manual, therefore it is time-consuming and
inconsistent. In this dissertation, Neural Network technique is used for developing prediction models for five different versions (2.0, 2.1, 3.0,
3.1, and 3.2) of Eclipse that will assign the priority levels based on the information provided in each bug report. The features that potentially
affect the priority of a bug are temporal, textual, author-related, severity, product and component. Collected dataset is used to train and test the
classification algorithms. ROC and F-measure is used to interpret the results.

Keywords: Neural Network, Priority Prediction, Machine Learning, Textual Analysis, MLP, Naïve Bayes, Eclipse, Bugzilla.

1. INTRODUCTION

In the present scenario, there are situations where the size of
the software is increasing at an exponential rate and that
implies complexity too is growing. As a result, defects enter
the software and lead to functional failures. Furthermore, the
defects that are initiated by the software are of varying
severity levels. There are various bug tracking systems that
contain detailed information about these defects along with
their ID’s and associated severity level. These defects range
from mild to catastrophic based on their effects, wherein
catastrophic defects are most severe defects and may lead
the entire system to go to a crash state. Hence, the defects
introduced in the software should be assigned priority levels
which will help in investigating bug reports easily by their
priority.
There are considerable amount of resources that are
involved in software improvement. The task of assigning
priority to reported bugs is by and large a manual one and
accrues the cost of billions of dollars every year. Still, many
software systems are released with defects due to lack of
testing. Therefore, to improve and address upcoming
versions, developers need to get feedback on defects that are
present in released systems [1]. Thus, depending on the
complexity of the software system, developers allow end
users to report defects using bug reporting systems such as
Bugzilla, Jira et al. It is a standard practice in both open
source software development and closed source software
development. Bug tracking systems help in continuous
monitoring and reporting of bugs [2]. Machine learning
techniques are just the right kind of algorithms that make the
task of bug prediction and classification straightforward and
efficient. Further, to enhance the efficiency of a bug
classifier by using feature extraction techniques that will
help in supplying the refined information to the machine
which is achieved by using text mining algorithms. Text
mining algorithms extract keywords from bug reports by
picking up high importance words- these processed words
along the original bug reports are used to improve the
accuracy of a classifier. Our approach predicts the priority
level of bug reports from Bugzilla using text classification

method considering several factors/fields that affect the
priority of a bug report. These factors are as follows [3]:

• Temporal: other bug reports that are reported at the
same time as the bug report.

• Textual: the textual component of the bug report.
• Author: the author of the bug report.
• Related-report: related bug reports.
• Severity: the estimated severity of the bug.
• Product: the affected product in which the bug is

invoked.

2. TEXT PRE-PROCESSING

The standard text pre-processing techniques are specifically
used to extract the textual content of data into a set of
features that are meaningful. These methods include
tokenization, stop word removal, and stemming [4].
A. Tokenization: Tokenization is a process that is used to
separate tokens from a textual document by splitting the text
into tokens.
B. Stop-Word Removal: Stop words are removed as they
might reduce the effectiveness of machine learning or
information retrieval solutions due to their skewed
distributions. There is a significant portion of such stop
words including “am”, “are”, “is”, “I”, “he”, etc. These stop
words should be removed from the set of tokens that are
extracted through tokenization (in the previous steps).
C. Stemming: There are many forms of words; in English,
grammatical rules dictate if a root word appears in singular,
plural, present tense, past tense, future tense, or many other
forms. Words beginning from the same root word yet are not
identical with one another are semantically related, for
example, in “write”, “writes” or “writing”. Stemming tries
its best to reduce a word to its ground level form. For
example, “usability”, “usable”, and “use” would all be
reduced to “use”. In this work, Porter’s stemming algorithm
[5] is used to process the text and is used many prior studies,
for instance, [5] , [6] and [7].

Pooja Awana Chaudhary et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1315-1319

© 2015-19, IJARCS All Rights Reserved 1316

3. LITERATURE SURVEY

Till date, there are very few studies on finding such
relationship taking the severity of faults into account. The
most popular study in the field of fault severity has been
done by the authors [8]. They analysed the performance of
models at three levels of severity such as high, medium and
low severity faults and concluded that the model predicted at
high severity faults is less accurate as compared to the
models predicted at other severities. It was summarised that
the models predicted using DT and ANN methods are better
than the models predicted using LR method. Also, it was
seen that the metrics such as CBO, WMC, RFC and SLOC
are necessary for the faults at all the severity levels. Support
Vector Machine (SVM), cascade correlation network, group
method of data handling polynomial method, gene
expression programming) [9]. AUC calculated the
performance from a ROC Curve. Many researchers use
ROC curves for the modules for predicting fault-prone or
not fault-prone [10].
The work was done [10] is similar to the work of Menzies
[11]. Permata have also developed a model for the
assignment of the bug severity level. They have used the
same pre-processing tasks (tokenization, stop words removal
and stemming) and feature selection method, but, have used
SVM as their classification method.
In this study, [12] the authors automatically assign priorities
to Firefox crash reports in Mozilla Socorro server based on
the frequency and entropy of the crashes. When Firefox
fails, crash reports are automatically submitted to the
Socorro server, and it contains a stack trace and relevant
information about the environment to help developers debug
the crash. In the study, the authors investigated bug reports
that are manually submitted by users.These reports are
different from a crash report, a bug report contains natural
language descriptions of a bug and might not include any
stack trace or environment information. They employ a text
mining based solution to assign priorities to bug reports.
Some studies [13] group bugs into different categories.
Huang et al. propose a text mining solution to categorising
bug reports as either capability, security, performance,
reliability, requirement, or usability related bugs.
In the year 2012, [14] Tian also predicted the severity of bug
reports by using the nearest neighbor approach to predict
fine-grained bug report labels. Different from work by
Menzies which analyses a collection of bug reports in
NASA, Tian applies the solution to a larger collection of
bug reports consisting of more than 65,000 Bugzilla reports.
Severity levels are given by users, while priority levels are
assigned by developers. Severity levels relate to the impact
of the bug on the software system as understood by users
and priority levels relate to the importance bug reports that
are received [15]. Tian [14] used automatically detects and
analyse bug reports, which had been reported in the past
seven days with severity levels, and taking these reports in
consideration severity levels to newly reported bug reports
are assigned. They determine the similarity between used
duplicate bug reports with relative information and features.
This similarity in information helps in assigning the severity
levels accurately and quickly.
In the area of similar bugs, a study is presented by [16].
Some research in the field of bug triaging support by

recommending appropriate developers to fix a particular
bug. Levenberg-Marquardt (LM) algorithm based on neural
network predicts the software defects at an early stage of the
SDLC is described by [17]. They use data available on the
PROMISE repository of empirical software engineering
dataset. The dataset uses the CK (Chidamber and Kemerer)
[18] metrics. The study concludes that the Levenberg-
Marquardt (LM) neural network based algorithm gives
better accuracy (88.09%) as compared to every polynomial
function-based neural networks (pF-NNs), linear function-
based neural network (lf-NN) and quadratic function- based
neural network (qf-NN) respectively. A defect prediction
model using data mining. Gayathri [19] worked on an
enhanced Multilayer Perceptron, Neural Network technique
are proposed, in which comparative analysis of modelling of
defect proneness predictions using a dataset of different
metrics from NASA MDP (Metrics Data Program) was
performed.
CART algorithm and Bayesian logistic regression. Kapila &
Satwinder, in their study, use Bayesian inference with six
individual software metrics for early prediction of the
software fault. They use Bayesian inference model to
identify a posterior probability of fault occurrence [20].
In [21] an approach is described for static reliability
modelling, and for modelling of software reliability from
software complexity regarding the predictive quality and the
quality of fit. The performance is compared with more
traditional regression modelling techniques.The work
concluded that the neural network model is superior as
compared to traditional regression-based techniques and had
a less standard error.
Other tasks of Tian [14] presented an automated approach
with the help of machine learning in suggesting a priority
level by information in bug reports. They consider
multifactor temporal, textual, author, related reports, product
and severity, as potential factors, which affect the priority
level of reported bug reports. They use these factors as
features to train a model with the help of a classification
algorithm (thresholding and linear regression), which can
perform well in ordinal class labels and imbalanced data.
They conducted their experiment on more than 100,000
reports collected from Eclipse. This experiment shows an
improvement of 58.61% regarding average F-measure by
outperforming baseline approach. [22] Extended their
previous work by using extracted features to train a
discriminative model via a new classification algorithm
(linear regression) and their framework named DRONE.
The new work provides a way to handle ordinal class labels
and imbalanced data. They managed to improve their work
on 100,000 bug reports from Eclipse regarding F-measure
by 209%, which outperform baseline approach.
In addition to this, [23] presented an approach, in which
they implement an improved method of detecting duplicate
bug reports using the textual similarity features and binary
classification. They used a total of 25 textual features, then
run their classification method to categorise pairs of bugs
into two types: duplicate and non-duplicate. They used new
textual elements, derived based on text similarity measures,
and trained several binary classification models. After
training the models, they tested their work on bug reports
collected from Eclipse, OpenOffice and Mozilla to analyse
the effectiveness of the improved method. They also
compared it with the current state of- the art and highlighted

Pooja Awana Chaudhary et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1315-1319

© 2015-19, IJARCS All Rights Reserved 1317

the similarities and differences. They were able to achieve
an improvement of 6.32% in duplicate bug report detection
even without considering context-based features.

4. RESEARCH METHODOLOGY

Neural Network MLP (Multilayer Perceptron)
A neural network consists of a pool of simple processing
units which communicate by sending signals to each other
over a large number of weighted connections. Each unit
performs a relatively simple job: receive input from
neighbors or external sources and use this to compute an
output signal which is propagated to other units. Apart from
processing, a second task is the adjustment of the weights.
The system is inherently parallel in the sense that many
units can carry out their computations at the same time.
Within neural systems, it is useful to distinguish three types
of units: input units which receive data from outside the
neural network, output units which send data out of neural
network, and hidden units whose inputs and output signals
remain within the neural network.

Fig. 1: General Architecture of Neural Network

The figure shows general architecture of neural network
with one input, hidden and an output layer.
Mathematically,
Netk = W1kX1 + W2kX2 + ….. WmkXm + b
Sigmoid Activation Function:

k

The backpropagation algorithm focuses on the minimum
error function in weight space. The error function is
minimised by the combination of weights that are solutions
of the learning problem. The activation function is used in
perceptrons, because the composite function produced by
interconnected perceptrons is discontinuous, and therefore
the error function too. One of the most popular activation
functions for backpropagation networks is the sigmoid,
defined by the expression

Sc(x) =
The constant c can be selected arbitrarily and its reciprocal
1/c know as the temperature parameter in stochastic neural
networks. The shape of the sigmoid changes according to
the value of c, as can be seen in Figure 2.

Fig. 2 Three Sigmoids for c=1, c=2, c=3

The graph shows the shape of the sigmoid for c = 1, c = 2
and c = 3. A higher value of c bring the shape of the sigmoid
closer to that of the step function, and when c! 1 the sigmoid
converges to a step function at the origin.
Naïve Bayes Classifier
Naïve Bayes classifier is a simple probabilistic classifier
based on applying Bayes' theorem (from Bayesian statistics)
with strong (naive) independence assumptions. A more
descriptive term for the underlying probability model would
be "independent feature model". In simple terms, a Naïve
Bayes classifier assumes that the presence (or absence) of a
particular feature of a class is unrelated to the presence (or
absence) of any other feature [28]. Depending on the precise
nature of the probability model, Naïve Bayes classifiers can
be trained very efficiently in a supervised learning setting.
In many practical applications, parameter estimation for
Naïve Bayes models uses the method of maximum
likelihood; in other words, one can work with the Naïve
Bayes model without believing in Bayesian probability or
using any Bayesian methods [29].

5. EVALUATION MEASURES

Precision, recall, and F-measure, which are commonly used
to measure the accuracy of classification algorithms, are
used to evaluate the effectiveness of MLP and Naïve Bayes
algorithms. In this work, precision, recall, and F-measure
are used to evaluate the results for each of the priority
levels. The same measures are used in the experiments of
Menzies and Marcus to evaluate the results of Severis [11].
Mathematically, precision, recall, and F-measure can be
represented as below:

1. Precision = TP \ FP+TP
2. Recall = TP \ TP + FN
3. F-measure = 2 * Precision * Recall \ Precision +

Recall

Validation Method Used
In this section, for all the versions, both the algorithms are
tested by performing 10-fold cross-validation tests with 10
repetitions, which means 100 runs for each combination.
The process for cross-validation is chosen for this work
because it is a standard that guarantees a stratified sampling
of the dataset [24], [25] and reduces overfitting [26]. The
performance values such as precision, recall, F-measure,
area under ROC are produced with each run.

6. DATA COLLECTION

Eclipse projects focus on building extensible frameworks,
tools and runtimes for building and managing software
throughout its lifetime. It has many products and
components. The versions that are selected for this work are
2.0, 2.1, 3.0, 3.1, and 3.2. There are five main products of
Eclipse from which only three are selected for data
collection process, namely JDT, PDE and Platform. The
Bugzilla database contains all errors (bugs) that have been
found in the lifetime of the Eclipse project with the detailed
information that includes the release number, bug severity,
summary, long description, priority, status, changed the
date, reported date, the name of the reporter, etc.

Pooja Awana Chaudhary et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1315-1319

© 2015-19, IJARCS All Rights Reserved 1318

7. RESULTS AND DISCUSSIONS

In this section, the results of various experiments carried out
during the research are listed and discussed. The listed
experiments were performed with the objective of

classifying the priorities of bugs using MLP and Naïve
Bayes. The tests have been performed on five versions of
Eclipse project viz 2.0, 2.1, 3.0, 3.1, 3.2.
Table 1: Results of MLP and Naïve Bayes for 10-fold cross-
validation

Versions Algorithms Priority Precisi
on

Recall F-measure ROC Algorithm Priori
ty

Precisio
n

Recall F-measure ROC

2.0

MLP

P1 0.743 0.491 0.591 0.895

Naïve Bayes

P1 0.743 0.491 0.591 0.895
P2 0.742 0.641 0.688 0.911 P2 0.742 0.641 0.688 0.911
P3 0.944 0.981 0.962 0.986 P3 0.944 0.981 0.962 0.986
P4 0.523 0.246 0.335 0.876 P4 0.523 0.246 0.335 0.876
P5 0.600 0.851 0.703 0.924 P5 0.600 0.851 0.703 0.924

2.1

MLP

P1 0.200 0.033 0.056 0.597

Naïve Bayes

P1 0.200 0.033 0.056 0.597
P2 0.725 0.458 0.561 0.809 P2 0.725 0.458 0.561 0.809
P3 0.780 0.933 0.849 0.844 P3 0.780 0.933 0.849 0.844
P4 0.000 0.000 0.000 0.514 P4 0.000 0.000 0.000 0.514
P5 0.015 0.015 0.023 0.595 P5 0.015 0.015 0.023 0.595

3.0

MLP

P1 0.382 0.153 0.219 0.807

Naïve Bayes

P1 0.382 0.153 0.219 0.807
P2 0.534 0.482 0.507 0.785 P2 0.534 0.482 0.507 0.785
P3 0.876 0.913 0.894 0.913 P3 0.876 0.913 0.894 0.913
P4 0.333 0.707 0.453 0.830 P4 0.333 0.707 0.453 0.830
P5 0.000 0.000 0.000 0.868 P5 0.000 0.000 0.000 0.868

3.1

MLP

P1 0.000 0.000 0.000 0.742

Naïve Bayes

P1 0.000 0.000 0.000 0.742
P2 0.613 0.795 0.692 0.860 P2 0.613 0.795 0.692 0.860
P3 0.916 0.969 0.942 0.948 P3 0.916 0.969 0.942 0.948
P4 0.188 0.053 0.082 0.720 P4 0.188 0.053 0.082 0.720
P5 0.455 0.247 0.320 0.789 P5 0.455 0.247 0.320 0.789

3.2

MLP

P1 0.736 0.804 0.768 0.907

Naïve Bayes

P1 0.736 0.804 0.768 0.907
P2 0.692 0.686 0.689 0.809 P2 0.692 0.686 0.689 0.809
P3 0.872 0.895 0.883 0.951 P3 0.872 0.895 0.883 0.951
P4 0.000 0.000 0.000 0.515 P4 0.000 0.000 0.000 0.515

It can be easily inferred from the above table that the model
performs efficiently in classifying the priority P3. Priority
P3 is the most abundant type of priority that has been found
in the bug reports. The classifier also performs best in
classifying P3 with an average precision of about 79 percent
and a recall of about 80 percent (in Eclipse 2.0). The MLP
based model is also performing efficiently in performing the
classification of different priorities with ROC varying
around 87.6 percent to 98.6 percent. The ROC values in this
range denote good to excellent perceptiveness.
It can be easily inferred from the above table that the model
performs efficiently in classifying the priority P3 and P5.
The classifier also performs best in classifying P3 with an
average precision of about 82.7 percent and a recall of about
80.9 percent (in Eclipse 2.0) which is 1.5 to 3 percent better
as compared to MLP. The Naïve Bayes based model is also
performing efficiently in performing the classification of
different priorities with ROC varying around 89 percent to
98 percent. The ROC values in this range denote good to
excellent perceptiveness. Therefore, it can be concluded that
the results of both the algorithms are efficient for predicting
bug priorities.

8. CONCLUSION AND FUTURE WORK

Bug reports of three components of Eclipse are chosen for
this research, four main processes performed in experiments
are: dataset acquisition, pre-processing, feature selection and
classification. Then classification is done using MLP and
Naïve Bayes and basis of precision and recall their
performance is compared. The prediction models are
developed with the 10-fold cross-validation. It was evident
from the results that the model has performed very well in
predicting the priorities.

The research used only five versions and three products of
Eclipse project for bug priority prediction. Therefore in
future, other products and versions of Eclipse, Mozilla et al
may be used and cross component could be applied by
creating a global dictionary of Eclipse.

9. REFERENCES

1. A Lamkanfi, . S. Demeyer , Q. D. Soetens and T. Verdonck,

"Comparing Mining Algorithms for Predicting the Severity
of a Reported Bug," in 15th European Conference on
Software Maintenance and Reengineering (CSMR), 2011,
Oldenburg, Germany, 2011.

2. N. Serrano and . I. Ciordia, "Bugzilla, ITracker, and Other
Bug Trackers," IEEE Software, pp. 11-13, March\April
2005.

3. Y. Tian, D. Lo and C. Sun, "DRONE: Predicting Priority of
Reported Bugs by Multi-Factor Analysis," in 2013 IEEE
International Conference on Software Maintenance, 2013.

4. J. Kanwal and O. Maqbool, "Bug prioritization to facilitate
bug report triage," Journal of Computer Science and
Technology, vol. 27, no. 2, pp. 397-412, March 2012.

5. M. Porter, "An Algorithm for Suffix Stripping, Program,"
Program, vol. 14, no. 3, pp. 130-137, 1980.

6. Lamkanfi, S. Demeyer, E. Giger and B. Goethals,
"Predicting the Severity of a Reported Bug," in Mining
Software Repositories (MSR), 2010 7th IEEE Working
Conference on, Cape Town, South Africa, 2010.

7. X. Wang, L. Zhang, T. Xie, J. Anvik and J. Sun, "An
Approach to Detecting Duplicate Bug Reports Using Natural
Language and Execution Information.," in Software
Engineering, 2008. ICSE '08. ACM/IEEE 30th International
Conference on, Leipzig, Germany, 2008.

8. C. Sun, . D. Lo, S.-C. Khoo and J. Jiang, "Towards more
accurate retrieval of duplicate bug reports," in Automated
Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on, Lawrence, KS, USA, 2011.

9. Y. Singh, A. Kaur and R. Malhotra, "Empirical validation of
object-oriented metrics for predicting fault proneness

Pooja Awana Chaudhary et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1315-1319

© 2015-19, IJARCS All Rights Reserved 1319

models," Software Quality Journal, vol. 18, no. 3, pp. 3-35,
March 2010.

10. . I. G. Permata and Sari, "An Attribute Selection For Severity
Level Determination According To The Support Vector
Machine Classification Result," in 1st International
Conference on Information Systems For Business
Competitiveness (ICISBC) 2011, 2011.

11. T. Menzies and A. Marcus, "Automated Severity Assessment
of Software Defect Reports," in Proceedings of the 24th
IEEE International Conference on Software Maintenance
(ICSM'08), Beijing, China, 2008.

12. F. Khomh, . B. Chan, Y. Zou and . A. . E. Hassan, "An
Entropy Evaluation Approach for Triaging Field Crashes: A
Case Study of Mozilla Firefox," in Reverse Engineering
(WCRE), 2011 18th Working Conference on, Limerick,
Ireland, 2011.

13. L. Huang, V. Ng, I. Persing, M. Chen, Z. Li, R. Geng and J.
Tian, "AutoODC: Automated generation of orthogonal
defect classifications," Automated Software Engineering,
vol. 22, no. 1, p. 3–46, March 2015.

14. . Y. Tian, D. Lo and C. Sun, "Information Retrieval Based
Nearest Neighbor Classification for Fine-Grained Bug
Severity Prediction," in Reverse Engineering (WCRE), 2012
19th Working Conference on, Kingston, ON, Canada, 2012.

15. Eclipse, "http://wiki.eclipse.org/Bug Reporting FAQ#What
is the difference between Severity and Priority.3F," 2012.
[Online].

16. H. Hosseini, . R. Nguyen and M. W. Godfrey, "A Market-
Based Bug Allocation Mechanism Using Predictive Bug
Lifetimes," in Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on, Szeged,
Hungary, 2012.

17. G. . D. Boetticher, "Applying Machine Learners to GUI
Specifications in Formulating Early Life Cycle Project

Estimations," in Software Engineering with Computational
Intelligence, Springer, 2003, pp. 1-16.

18. S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for
Object Oriented Design," IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476-493, June 1994.

19. M. Gayathri and A. Sudha, "Software defect prediction
system using multilayer perceptron neural network with data
mining," International Journal of Recent Technology and
Engineering, vol. 3, no. 2, pp. 54-59, May 2014.

20. H. Kapila and S. Singh, "Analysis of CK Metrics to Predict
Software Fault-Proneness using Bayesian Inference,"
International Journal of Computer Applications, vol. 74, no.
2, July 2013.

21. N. Katiyar and R. Singh, "Prediction of Software
Development Faults Using Neural Network," VSRD-IJCSIT,
vol. 1, no. 8, pp. 556-566, 2011.

22. Y. Tian, D. Lo, X. Xia and C. Sun, "Automated prediction of
bug report priority using multi-factor analysis," Empirical
Software Engineering, vol. 20, no. 5, pp. 1354-1383, 2014.

23. Lazar, S. Ritchey and B. Sharif, "Improving the Accuracy of
Duplicate Bug Report Detection Using Textual Similarity
Measures," in 11th Working Conference on Mining Software
Repositories, Hyderabad, India, 2014.

24. Y. Bengio and Y. Grandvalet, "No unbiased estimator of the
variance of k-fold cross-validation," The Journal of Machine
Learning Research, vol. 5, pp. 1089-1105, 2004.

25. P. Cohen and D. Jensen, "Overfitting explained," in
Preliminary Papers of the Sixth International Workshop on
Artificial Intelligence and Statistics, 1997.

26. M. Stone, "Cross-Validatory Choice and Assessment of
Statistical Predictions," Journal of the Royal Statistical
Society,Ser B, vol. 36, no. 2, pp. 111-147, 1974.

27. Y. Singh, A. Kaur and R. Malhotra, "Prediction of Fault-
Prone Software Modules using," International Journal of
Computer Applications, vol. 1, no. 22, pp. 8-15, 2010.

	Neural Network MLP (Multilayer Perceptron)
	Naïve Bayes Classifier

