
��������	�
����	�
������������

��������������
������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

�

© 2010, IJARCS All Rights Reserved 578

ISSN No. 0976-5697

Comparative study on the Mining Iceberg Cubes Algorithms

Dr. Pankaj Nagar
Department of Statistics

University of Rajasthan, Jaipur

Rajasthan(India)

pnagar121@gmail.com

Sheelesh Kumar Sharma*
Associate Professor

I.M.S. Ghaziabad

U.P. India

sheelesh@mail.com

Dr. V.P. Gupta
Professor

K.I.E.T.-Ghaziabad

U.P. India

vpguptajp@yahoo.com

Abstract: A data warehouse is a collection of data for supporting of decision making process. Data cubes and on-line analytical processing

(OLAP) have become very popular techniques to help users analyze data in a warehouse. An iceberg cube consists of only the set of group-bys

whose aggregates are no less than a user-specified aggregate threshold, and does not compute a complete cube. Mining iceberg cubes is an

important research problem in both online analytic processing (OLAP) and data mining. It can be to answer group-by queries, mine

multidimensional association rules, and identify interesting subsets of the cube for pre-computation. A data warehouse is often organized in a

schema of multiple tables, such as star schema or snowflake schema, in practice. Several algorithms, such as BUC, MultiWay (Y. Zhao et al.,

1997), H-Cubing (Han et al., 2001), and Star-Cubing (Xin et al., 2003), have been proposed to compute iceberg cubes from data warehouse. This

paper focus on comparative study in respect to the performance of all above mentioned algorithms. Researcher finds that MultiWay and H-

Cubing do not perform well in high dimension and high cardinality datasets. Performance study demonstrates that Star-Cubing is a promising

method.

Keyword: Mining, Algorithms, data warehouse, online analytic processing

I. INTRODUCTION

An Iceberg-Cube contains only those cells of the data

cube that meet an aggregate condition. It is called an

Iceberg-Cube because it contains only some of the cells of

the full cube, like the tip of an iceberg. The aggregate

condition could be, for example, minimum support or a

lower bound on average, min or max. The purpose of the

Iceberg-Cube is to identify and compute only those values

that will most likely be required for decision support

queries. The aggregate condition specifies which cube

values are more meaningful and should therefore be stored.

This is one solution to the problem of computing versus

storing data cubes. For a three dimensional data cube, with

attributes A, B and C, the Iceberg-Cube problem may be

represented as:

SELECT a, B, C, Count (*), SUM (X) FROM Table

Name CUBE BY A, B, C

HAVING COUNT (*)>=minsup

Where minsup is the minimum support. Minimum

support is the minimum number of tuples in which a

combination of attribute values must appear to be

considered frequent. It is expressed as a percentage of the

total number of tuples in the input table.

When an Iceberg-Cube is constructed, it may also

include those totals from the original cube that satisfy the

minimum support requirement. The inclusion of totals

makes Iceberg-Cubes more useful for extracting previously

unknown relationships from a database. For example,

suppose minimum support is 25% and we want to create an

Iceberg-Cube using Table 1 as input. For a combination of

attribute values to appear in the Iceberg-Cube, it must be

present in at least 25% of tuples in the input table, or 2

tuples. The resulting Iceberg-Cube is shown in Table 2.

Those cells in the full cube whose counts are less than 2,

such as ({P1, L1, C1},1), are not present in the Iceberg-

Cube.
Table 1: Sample Database Table

Part StoreLocation Customer

P1 L1 C1

P1 L2 C2

P1 L3 C3

P2 L3 C4

P2 L3 C4

P2 L3 C5

P2 L4 C4

P3 L5 C5

Table 2: Sample Iceberg-Cube with Minimum Support of at least 25%

Combination Count

{P1, ANY, ANY} 3

{P2, ANY, ANY} 4

{ANY, L3, ANY} 4

{ANY, ANY, C4} 3

{P2, L3, ANY} 3

{P2, ANY, C4} 3

{ANY, L3, C4} 2

{P2, L3, C4} 2

Sheelesh Kumar Sharma et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,578-581

© 2010, IJARCS All Rights Reserved 579

II. ALGORITHMS FOR MINING ICEBERG-

CUBES

A. Apriori

The APRIORI algorithm uses candidate combinations

to avoid counting every possible combination of attribute

values. For a combination of attribute values to satisfy the

minimum support requirement, all subsets of that

combination must also satisfy minimum support. The

candidate combinations are found by combining only the

frequent attribute value combinations that are already

known. All other possible combinations are automatically

eliminated because not all of their subsets would satisfy the

minimum support requirement.

To do this, the algorithm first counts all single values

on one pass of the data, then counts all candidate

combinations of the frequent single values to identify

frequent pairs. On the third pass over the data, it counts

candidate combinations based on the frequent pairs to

determine frequent 3-sets, and so on. This method

guarantees that all frequent combinations of k values will be

found in k passes over the database.

B. MultiWay

MultiWay is an array-based top-down cubing

algorithm. It uses a compressed sparse array structure to

load the base cuboid and compute the cube. In order to save

memory usage, the array structure is partitioned into chunks.

It is unnecessary to keep all the chunks in memory since

only parts of the group-by arrays are needed at any time. By

carefully arranging the chunk computation order, multiple

cuboids can be computed simultaneously in one pass. The

MultiWay algorithm is effective when the products of the

cardinalities of the dimensions are moderate. If the

dimensionality is high and the data is too sparse, the method

becomes infeasible because the arrays and intermediate

results become too large to fit in memory. Moreover, the

top-down algorithm cannot take advantage of Apriori

pruning during iceberg cubing, i.e., the iceberg condition

can only be used after the whole cube is computed.

Top-down computation (tdC) computes an Iceberg-

Cube by traversing down a multi-dimensional lattice formed

from the attributes in an input table. The lattice represents

all combinations of input attributes and the relationships

between those combinations. Figure 1 shows a 4-

Dimensional lattice of this type. The processing path of tdC

is shown in Figure 2. The algorithm begins by computing

the frequent attribute value combinations for the attribute set

at the top of the tree, in this case ABCD. On the same pass

over the data, tdC counts value combinations for ABCD,

ABC, AB and A, adding the frequent ones to the Iceberg-

Cube. This is facilitated by first ordering the database by the

current attribute combination, ABCD. tdC then continues to

the next leaf node in the tree, ABD, and counts those

attribute value combinations. For n attributes, there are 2n-1

possible combinations of those attributes, which are

represented as the leaf nodes in the tree. If no pruning

occurs, then tdC examines every leaf node, making 2n-1

passes over the data. Pruning can occur when no attribute

value combinations are found to be frequent for a certain

combination of attributes.

Figure 1: 4-Dimensional Lattice

Figure 2: Processing Tree of tdC for Four Attributes

C. Bottom-Up Computation

The bottom-up computation algorithm (BUC)

repeatedly sorts the database as necessary to allow

convenient partitioning and counting of the combinations

without large main memory requirements. BUC begins by

counting the frequency of the first attribute in the input

table. The algorithm then partitions the database based on

the frequent values of the first attribute, so that only those

tuples that contain a frequent value for the first attribute are

further examined. BUC then counts combinations of values

for the first two attributes and again partitions the database

so only those tuples that contain frequent combinations of

the first two attributes are further examined, and so on.

For a database with four attributes, A, B, C and D, the

processing tree of the BUC algorithm is shown in Figure 3.

As with the tdC processing tree, this is based on the 4-

dimensional lattice from Figure 1. The algorithm examines

attribute A, then partitions the database by the frequent

values of A, sorting each partition by the next attribute, B,

for ease of counting AB combinations. Within each

partition, BUC counts combinations of attributes A and B.

Again, once the frequent combinations are found, the

database is partitioned, this time on frequent combinations

of AB, and is sorted by attribute C. When no frequent

combinations are found, the algorithm traverses back down

the tree and ascends to the next node. For example, if there

are no frequent combinations of AC, then BUC will

examine combinations of AD next. In this way, BUC prunes

passes over the data. As with the tdC algorithm, BUC

prunes most efficiently when the attributes are ordered from

highest to lowest cardinality.

Sheelesh Kumar Sharma et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,578-581

© 2010, IJARCS All Rights Reserved 580

Figure 3: Processing Tree of BUC for Four Attributes

D. H-Cubing

H-cubing (Han et al., 2001) uses a hyper-tree data

structure called H-tree to compress the base table. Then, the

H-tree can be traversed bottom-up to compute iceberg

cubes. It also can prune unpromising branches of search

using monotonic iceberg conditions. oreover, a strategy was

developed by Han et al. (2001) to use weakened but

monotonic conditions to approximate non-monotonic

conditions to compute iceberg cubes.

The strategies of pushing non-monotonic conditions

into bottom-up iceberg cube computation were further

improved by K. Wang et al. (2003). A new strategy, divide-

and-approximate, was developed. The general idea is that

the weakened but monotonic condition can be made up for

each sub-branch search and thus the approximation and

pruning power can be stronger.

E. Star-Cubing

Xin et al. (2003) developed Star-Cubing by extending

H-tree to Star-Tree and integrating the top-down and

bottom-up search strategies. Feng et al. (2004) proposed

another interesting cubing algorithm, Range Cube, which

uses a data structure called range trie to compress data and

identify correlation in attribute values. All of the previous

studies on computing iceberg cubes make an implicit

assumption: a universal base table is materialized. However,

this assumption may not be always true in practice – many

data warehouses are stored in tens or hundreds of tables. It is

often unaffordable to compute and materialize a universal

base table for iceberg cube computation. This observation

motivates the study in this section.

III. COMPARISON OF THE ALGORITHMS

A. Performance Analysis

All the four algorithms were coded using C++ on

Desktop 1.4GHz system with 512MB of RAM. The times

recorded include both the computation time and the I/O

time. For the remaining of this section, D denotes the

number of dimensions, C the cardinality of each dimension,

T the number of tuples in the base cuboid, M the minimum

support level, and S the skew or zipf of the data. When S

equals 0.0, the data is niform; as S increases, the data is

more skewed. S is applied to all the dimensions in a

particular data set.

Figure 4: Iceberg Cube Computation w.r.t. Cardinality, where T = 1M, D=

7, S=0, M=1000.

Experiments compare the four algorithms for iceberg

cube computation. Except MultiWay, all the algorithms

tested use some form of pruning that exploits the anti-

monotonicity of the count measure.

We compared BUC and Star-Cubing under high

dimension and high cardinality individually. The results are

shown in Figures 4. The data set used in Figure 4 had 1000K

tuples with 7 dimensions and 0 skew. The min_sup was

1000. The cardinality of each dimension was increased from

5 to 15. We can see that BUC and Star-Cubing performed

better in sparse data.

We further compared these two algorithm with higher

dimension and cardinality. In Figure 5, the data set had

1000K tuples with 10 dimensions, each with cardinality of

10. The skew of data was 0. At the point where min_sup is

1000,

Figure 5: Star-Cubing vs. BUS w.r.t. Minsup, where T=1M, D=10, C=10,

S=0.

Star-Cubing decreases the computation time more than

50% comparing with BUC. The improvements in

performance get much higher when the min_sup level

decreases. Star-Cubing runs around 5 times faster than

BUC. The I/O time no longer dominates the computation

here.

Figure 6 shows the performance comparison with

increasing cardinality.

Sheelesh Kumar Sharma et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,578-581

© 2010, IJARCS All Rights Reserved 581

Figure 6: Star-Cubing vs. BUS w.r.t. Cardinality, where T = 1M, D= 10,

S=1, M=100.

Star-Cubing is not sensitive to the increase of

cardinality; however, BUC improves its performance in high

cardinality due to sparser conditions. Although a sparser

cube enables Star-Cubing to prune earlier, the star tree is

getting wider. The increase in tree size requires more time in

construction and traversal, which negates the effects of

pruning. We suggest switching from Star-Cubing to BUC in

the case where the product of cardinalities is reasonably

large compared to the tuple size.

In this experiment, for 1000K tuple size, 10 dimensions,

and minimum support level of 100, if data skew is 0, the

algorithm should switch to BUC when cardinality for each

dimension is 40, if data skew is 1 (shown in Figure 6), the

switching point is 100.

The reason that the switching point increased with data

skew is that skewed data will get more compression in star-

tree, thus will achieve better performance. We will show

more detailed experiments in the next section.

Table: 3 Summary of the Algorithms

Algorithm Simultaneous

Aggregation

Partition and

Prune

Apriori No Yes

MultiWay Yes No

BUC No Yes

H-Cubing Weak Yes

Star-Cubing Yes Yes

IV. FINDING AND SUGGESTION

During this study researcher found the following

findings and suggestion.

A. MultiWay and H-Cubing do not perform well in high

dimension and high cardinality datasets.

B. Star-Cubing decreases the computation time more than

50% comparing with BUC.

C. Star-Cubing runs around 5 times faster than BUC.

D. Star-Cubing is not sensitive to the increase of

cardinality; however, BUC improves its performance in

high cardinality due to sparser conditions.

E. We suggest switching from Star-Cubing to BUC in the

case where the product of cardinalities is reasonably

large compared to the tuple size.

V. CONCLUSION

Performance study demonstrates that Star-Cubing is a

promising method. For the full cube computation, if the

dataset is dense, its performance is comparable with

MultiWay, and is much faster than BUC and H-Cubing. If

the data set is sparse, Star-Cubing is significantly faster than

MultiWayand H-Cubing, and faster than BUC, in most

cases. For iceberg cube computation, Star-Cubing is faster

than BUC, and the speedup is more when the min sup

decreases. Thus Star-Cubing is the only cubing algorithm so

far that has uniformly high performance in all the data

distributions.

VI. REFERENCES

[1] Zhao, Y., Deshpande, P. M., & Naughton, J. F. (1997).

An array-based algorithm for simultaneous

multidimensional aggregates. In Sigmod ’97:

Proceedings of the 1997 acm sigmod international

conference on management of data (pp. 159–170). New

York, NY, USA: ACM Press.

[2] Han, J., Pei, J., Dong, G., & Wang, K. (2001, May).

Efficient computation of iceberg cubes with complex

measures. In Sigmod ’01: Proceedings of the 2001 acm

sigmod internationalconference on management of data

(pp. 1–12). Santa Barbara, California.

[3] Xin, D., Han, J., Li, X., & Wah, B. W. (2003). Star-

cubing: Computing iceberg cubes by topdown and

bottom-up integration. In Vldb ’03: Proceedings of the

2003 vldb internationalconference on very large data

bases.

[4] Feng, Y., Agrawal, D., Abbadi, A. E., & Metwally, A.

(2004). Range cube: Efficient cube computation by

exploiting data correlation. In Icde’04: Proceedings of

the 2004 ieee international conference on data

engineering (p. 658-670).

