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Abstract: A data warehouse is a collection of data for supporting of decision making process. Data cubes and on-line analytical processing 

(OLAP) have become very popular techniques to help users analyze data in a warehouse. An iceberg cube consists of only the set of group-bys 

whose aggregates are no less than a user-specified aggregate threshold, and does not compute a complete cube. Mining iceberg cubes is an 

important research problem in both online analytic processing (OLAP) and data mining. It can be to answer group-by queries, mine 

multidimensional association rules, and identify interesting subsets of the cube for pre-computation. A data warehouse is often organized in a 

schema of multiple tables, such as star schema or snowflake schema, in practice. Several algorithms, such as BUC, MultiWay (Y. Zhao et al., 

1997), H-Cubing (Han et al., 2001), and Star-Cubing (Xin et al., 2003), have been proposed to compute iceberg cubes from data warehouse. This 

paper focus on comparative study in respect to the performance of all above mentioned algorithms. Researcher finds that MultiWay and H-

Cubing do not perform well in high dimension and high cardinality datasets. Performance study demonstrates that Star-Cubing is a promising 

method. 
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I. INTRODUCTION 

An Iceberg-Cube contains only those cells of the data 

cube that meet an aggregate condition. It is called an 

Iceberg-Cube because it contains only some of the cells of 

the full cube, like the tip of an iceberg. The aggregate 

condition could be, for example, minimum support or a 

lower bound on average, min or max. The purpose of the 

Iceberg-Cube is to identify and compute only those values 

that will most likely be required for decision support 

queries. The aggregate condition specifies which cube 

values are more meaningful and should therefore be stored. 

This is one solution to the problem of computing versus 

storing data cubes. For a three dimensional data cube, with 

attributes A, B and C, the Iceberg-Cube problem may be 

represented as: 

SELECT a, B, C, Count (*), SUM (X) FROM Table 

Name CUBE BY A, B, C 

HAVING COUNT (*)>=minsup  

Where minsup is the minimum support. Minimum 

support is the minimum number of tuples in which a 

combination of attribute values must appear to be 

considered frequent. It is expressed as a percentage of the 

total number of tuples in the input table. 

When an Iceberg-Cube is constructed, it may also 

include those totals from the original cube that satisfy the 

minimum support requirement. The inclusion of totals 

makes Iceberg-Cubes more useful for extracting previously 

unknown relationships from a database. For example, 

suppose minimum support is 25% and we want to create an 

Iceberg-Cube using Table 1 as input. For a combination of 

attribute values to appear in the Iceberg-Cube, it must be 

present in at least 25% of tuples in the input table, or 2 

tuples. The resulting Iceberg-Cube is shown in Table 2. 

Those cells in the full cube whose counts are less than 2, 

such as ({P1, L1, C1},1), are not present in the Iceberg-

Cube. 
Table 1: Sample Database Table 

 

Part StoreLocation Customer 

P1 L1 C1 

P1 L2 C2 

P1 L3 C3 

P2 L3 C4 

P2 L3 C4 

P2 L3 C5 

P2 L4 C4 

P3 L5 C5 

 

Table 2: Sample Iceberg-Cube with Minimum Support of at least 25% 

 
Combination Count 

{P1, ANY, ANY} 3 

{P2, ANY, ANY} 4 

{ANY, L3, ANY} 4 

{ANY, ANY, C4} 3 

{P2, L3, ANY} 3 

{P2, ANY, C4} 3 

{ANY, L3, C4}  2 

{P2, L3, C4} 2 
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II. ALGORITHMS FOR MINING ICEBERG-

CUBES  

A. Apriori  

The APRIORI algorithm uses candidate combinations 

to avoid counting every possible combination of attribute 

values. For a combination of attribute values to satisfy the 

minimum support requirement, all subsets of that 

combination must also satisfy minimum support. The 

candidate combinations are found by combining only the 

frequent attribute value combinations that are already 

known. All other possible combinations are automatically 

eliminated because not all of their subsets would satisfy the 

minimum support requirement. 

To do this, the algorithm first counts all single values 

on one pass of the data, then counts all candidate 

combinations of the frequent single values to identify 

frequent pairs. On the third pass over the data, it counts 

candidate combinations based on the frequent pairs to 

determine frequent 3-sets, and so on. This method 

guarantees that all frequent combinations of k values will be 

found in k passes over the database. 

B. MultiWay  

MultiWay is an array-based top-down cubing 

algorithm. It uses a compressed sparse array structure to 

load the base cuboid and compute the cube. In order to save 

memory usage, the array structure is partitioned into chunks. 

It is unnecessary to keep all the chunks in memory since 

only parts of the group-by arrays are needed at any time. By 

carefully arranging the chunk computation order, multiple 

cuboids can be computed simultaneously in one pass. The 

MultiWay algorithm is effective when the products of the 

cardinalities of the dimensions are moderate. If the 

dimensionality is high and the data is too sparse, the method 

becomes infeasible because the arrays and intermediate 

results become too large to fit in memory. Moreover, the 

top-down algorithm cannot take advantage of Apriori 

pruning during iceberg cubing, i.e., the iceberg condition 

can only be used after the whole cube is computed.  

Top-down computation (tdC) computes an Iceberg-

Cube by traversing down a multi-dimensional lattice formed 

from the attributes in an input table. The lattice represents 

all combinations of input attributes and the relationships 

between those combinations. Figure 1 shows a 4-

Dimensional lattice of this type. The processing path of tdC 

is shown in Figure 2. The algorithm begins by computing 

the frequent attribute value combinations for the attribute set 

at the top of the tree, in this case ABCD. On the same pass 

over the data, tdC counts value combinations for ABCD, 

ABC, AB and A, adding the frequent ones to the Iceberg-

Cube. This is facilitated by first ordering the database by the 

current attribute combination, ABCD. tdC then continues to 

the next leaf node in the tree, ABD, and counts those 

attribute value combinations. For n attributes, there are 2n-1 

possible combinations of those attributes, which are 

represented as the leaf nodes in the tree. If no pruning 

occurs, then tdC examines every leaf node, making 2n-1 

passes over the data. Pruning can occur when no attribute 

value combinations are found to be frequent for a certain 

combination of attributes.  

 
 

Figure 1: 4-Dimensional Lattice 

 

 
Figure 2: Processing Tree of tdC for Four Attributes 

C. Bottom-Up Computation 

The bottom-up computation algorithm (BUC) 

repeatedly sorts the database as necessary to allow 

convenient partitioning and counting of the combinations 

without large main memory requirements. BUC begins by 

counting the frequency of the first attribute in the input 

table. The algorithm then partitions the database based on 

the frequent values of the first attribute, so that only those 

tuples that contain a frequent value for the first attribute are 

further examined. BUC then counts combinations of values 

for the first two attributes and again partitions the database 

so only those tuples that contain frequent combinations of 

the first two attributes are further examined, and so on. 

For a database with four attributes, A, B, C and D, the 

processing tree of the BUC algorithm is shown in Figure 3. 

As with the tdC processing tree, this is based on the 4-

dimensional lattice from Figure 1. The algorithm examines 

attribute A, then partitions the database by the frequent 

values of A, sorting each partition by the next attribute, B, 

for ease of counting AB combinations. Within each 

partition, BUC counts combinations of attributes A and B. 

Again, once the frequent combinations are found, the 

database is partitioned, this time on frequent combinations 

of AB, and is sorted by attribute C. When no frequent 

combinations are found, the algorithm traverses back down 

the tree and ascends to the next node. For example, if there 

are no frequent combinations of AC, then BUC will 

examine combinations of AD next. In this way, BUC prunes 

passes over the data. As with the tdC algorithm, BUC 

prunes most efficiently when the attributes are ordered from 

highest to lowest cardinality. 
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Figure 3: Processing Tree of BUC for Four Attributes 

D. H-Cubing  

H-cubing (Han et al., 2001) uses a hyper-tree data 

structure called H-tree to compress the base table. Then, the 

H-tree can be traversed bottom-up to compute iceberg 

cubes. It also can prune unpromising branches of search 

using monotonic iceberg conditions. oreover, a strategy was 

developed by Han et al. (2001) to use weakened but 

monotonic conditions to approximate non-monotonic 

conditions to compute iceberg cubes.  

The strategies of pushing non-monotonic conditions 

into bottom-up iceberg cube computation were further 

improved by K. Wang et al. (2003). A new strategy, divide-

and-approximate, was developed. The general idea is that 

the weakened but monotonic condition can be made up for 

each sub-branch search and thus the approximation and 

pruning power can be stronger. 

E. Star-Cubing  

Xin et al. (2003) developed Star-Cubing by extending 

H-tree to Star-Tree and integrating the top-down and 

bottom-up search strategies. Feng et al. (2004) proposed 

another interesting cubing algorithm, Range Cube, which 

uses a data structure called range trie to compress data and 

identify correlation in attribute values. All of the previous 

studies on computing iceberg cubes make an implicit 

assumption: a universal base table is materialized. However, 

this assumption may not be always true in practice – many 

data warehouses are stored in tens or hundreds of tables. It is 

often unaffordable to compute and materialize a universal 

base table for iceberg cube computation. This observation 

motivates the study in this section. 

III. COMPARISON OF THE ALGORITHMS 

A. Performance Analysis 

All the four algorithms were coded using C++ on 

Desktop 1.4GHz system with 512MB of RAM. The times 

recorded include both the computation time and the I/O 

time. For the remaining of this section, D denotes the 

number of dimensions, C the cardinality of each dimension, 

T the number of tuples in the base cuboid, M the minimum 

support level, and S the skew or zipf of the data. When S 

equals 0.0, the data is niform; as S increases, the data is 

more skewed. S is applied to all the dimensions in a 

particular data set. 

 
 

Figure 4: Iceberg Cube Computation w.r.t. Cardinality, where T = 1M, D= 

7, S=0, M=1000. 

 

Experiments compare the four algorithms for iceberg 

cube computation. Except MultiWay, all the algorithms 

tested use some form of pruning that exploits the anti-

monotonicity of the count measure.   

We compared BUC and Star-Cubing under high 

dimension and high cardinality individually. The results are 

shown in Figures 4. The data set used in Figure 4 had 1000K 

tuples with 7 dimensions and 0 skew. The min_sup was 

1000. The cardinality of each dimension was increased from 

5 to 15. We can see that BUC and Star-Cubing performed 

better in sparse data.  

We further compared these two algorithm with higher 

dimension and cardinality. In Figure 5, the data set had 

1000K tuples with 10 dimensions, each with cardinality of 

10. The skew of data was 0. At the point where min_sup is 

1000,  

 

 
 

Figure 5:  Star-Cubing vs. BUS w.r.t. Minsup, where T=1M, D=10, C=10, 

S=0. 

 

Star-Cubing decreases the computation time more than 

50% comparing with BUC. The improvements in 

performance get much higher when the min_sup level 

decreases. Star-Cubing runs around 5 times faster than 

BUC. The I/O time no longer dominates the computation 

here. 

Figure 6 shows the performance comparison with 

increasing cardinality.  
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Figure 6:  Star-Cubing vs. BUS w.r.t. Cardinality, where T = 1M, D= 10, 

S=1, M=100. 

 

Star-Cubing is not sensitive to the increase of 

cardinality; however, BUC improves its performance in high 

cardinality due to sparser conditions. Although a sparser 

cube enables Star-Cubing to prune earlier, the star tree is 

getting wider. The increase in tree size requires more time in 

construction and traversal, which negates the effects of 

pruning. We suggest switching from Star-Cubing to BUC in 

the case where the product of cardinalities is reasonably 

large compared to the tuple size.  

In this experiment, for 1000K tuple size, 10 dimensions, 

and minimum support level of 100, if data skew is 0, the 

algorithm should switch to BUC when cardinality for each 

dimension is 40, if data skew is 1 (shown in Figure 6), the 

switching point is 100.  

The reason that the switching point increased with data 

skew is that skewed data will get more compression in star-

tree, thus will achieve better performance. We will show 

more detailed experiments in the next section. 

 
Table: 3 Summary of the Algorithms 

 

Algorithm Simultaneous 

Aggregation 

Partition and  

Prune 

Apriori No Yes 

MultiWay Yes No 

BUC No Yes 

H-Cubing Weak Yes 

Star-Cubing Yes Yes 

 

IV. FINDING AND SUGGESTION 

During this study researcher found the following 

findings and suggestion. 

A. MultiWay and H-Cubing do not perform well in high 

dimension and high cardinality datasets.  

B. Star-Cubing decreases the computation time more than 

50% comparing with BUC. 

C. Star-Cubing runs around 5 times faster than BUC. 

D. Star-Cubing is not sensitive to the increase of 

cardinality; however, BUC improves its performance in 

high cardinality due to sparser conditions. 

E. We suggest switching from Star-Cubing to BUC in the 

case where the product of cardinalities is reasonably 

large compared to the tuple size. 

V. CONCLUSION 

Performance study demonstrates that Star-Cubing is a 

promising method. For the full cube computation, if the 

dataset is dense, its performance is comparable with 

MultiWay, and is much faster than BUC and H-Cubing. If 

the data set is sparse, Star-Cubing is significantly faster than 

MultiWayand H-Cubing, and faster than BUC, in most 

cases. For iceberg cube computation, Star-Cubing is faster 

than BUC, and the speedup is more when the min sup 

decreases. Thus Star-Cubing is the only cubing algorithm so 

far that has uniformly high performance in all the data 

distributions. 
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