
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 2397

ISSN No. 0976-5697

Android Internal Analysis of APK by Droid_Safe & APK Tool

Heena Rawal
M. Tech.,Cyber Security

,Raksha Shakti University
Ahmedabad, Gujarat, India

Mr. Chandresh Parekh
Assistant Professor IT and Telecommunication

Raksha Shakti University
Ahmedabad, Gujarat, India

Abstract: Mobile devices have developed from simple devices, which are used for a phone call and SMS messages to Smartphone devices that
can run third party applications. Nowadays, information leak from mobile device is increased and due to this sensitive information like; bank
details, identity information and many more personal information. The whole scenario is from source to sink where when data is received from
source in between this process sensitive information is leaked by attacker. The leak of sensitive data from those Applications or Android
operating systems are being exploited by the attackers who got the capability of penetrating into the mobile systems without user authorization
causing compromise the confidentiality, integrity and availability of the applications and the user. This paper, it gave an update to the work done
in the project.
We present DroidSafe and Apk Tool a static information flow analysis tools that reports potential leaks of sensitive information in Android
applications. Moreover, this paper focuses on the Android Operating System and aim to detect existing Android apps.This Paper chooses several
sensitive information leakages from apps with help of these both tools.

Keywords: Smartphone Security; DroidSAfe, APK Tool, Source to Sink, Sensitive Information.

INTRODUCTION

A number of years ago, Smartphone’s and tablet have
become more common. They provide services such as social
networking, banking, etc. Also, they are prepared with many
features like Wi-Fi and GPS, make video calls and many
more equipment’s. With all these features, there also comes
a need for security for the mobile phones. This paper mainly
focuses on the Android Operating System.
Android, which is open source operating system, will be
more popular. At this time, there are over 50 mobile phone

companies are developingSmartphone’s with Android
operating system. Increasing the number of the Android
devices causes anxiety in term of user security. McAfee
Labs report illustrates that in the first quarter in 2012 to
2017, there is a raise in mobile malware, and the increase
was embattled almost only at the Android platform [1].
Figure 1 shows that there were 10 billion application
downloaded by the end of the 2012 to 2017. These quick
increases in applications download make Android to be the
mainly targets for malware.

Fig.1. Android Market Growth

In this paper, we are generating two Device IDs APK’s and
run on two tools (1) APK TOOL: which gives us folder
containing SMALI code and (2) we run same Device IDs on
Droid safe; it also gives different folders and now by

matching strings we extract sensitive data from source to
sink. And learning this malware can target the Android
phones and how it could be installed and activated in the
device by performing a malware analysis using static and

Heena Rawal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2397-2402

© 2015-19, IJARCS All Rights Reserved 2398

dynamic tools to understand the malware operations and
functionalities. To achieve these errands, it is necessary to
understand the Android architecture and its security model.
The rest of this testimony provide an explanation of the
project and is organized as follows: Section II presents a
general idea of Android architecture Section III describe
Android security model. After that, Section IV explains
Android application Section V Tools for data extraction
followed by analysis result in Section VI. Section VII shows
the detection results with two Device IDs running on two
tools. Section VIII discusses one way for outlook
enhancement. Lastly, it winds up the paper in Section VIII.
In Android application sensitive information leaks, as
implemented by malicious or misused code, form one of the
most well-known security threats to the Android ecosystem.
Now android supports a fine-grained information security
model in which users grant applications the right to access
sensitive information. This model has been less than doing
well at eliminating information leaks, in part because many
applications need to legally access sensitive information, but
only for a specific limited purpose — for example, an
application may legally need to access location information,
but only with the right to send the information to authorized
mapping servers.
Static analysis frameworks attempt to analyze the
application before it executes to discover all potential
sensitive flows. Standard issues that make problems the
constructionof such systems are the challenges of 1) scaling
to largeapplications and 2) maintaining precision in the
analysis suchthat it does not report too many flows that do
not actuallyexist in the application. One mostly prominent
issue withdeveloping static analyses for Android
applications is the size,richness, and complexity of the
Android API and runtime,which typically comprises
multiple millions of lines of codeimplemented in multiple
programming languages. Becausesensitive flows are often
generated by complex interactionsbetween the Android
application, API, and runtime, any staticanalysis must work
with an accurate model of this runtime toproduce acceptably
accurate results.
Accuracy is critical for a static analysis seeking to calculate
security properties of an application; any inaccuraciesin the
execution model provide a motivated attacker with

theopportunity to insert malicious flows that will not be
capturedby an analysis. Also, indistinctness in a model
could lead toresults that are impractical due to too many
fake positives;another target for a motivated attacker. To the
best of ourknowledge, the difficulty of obtaining an
acceptably accurateand precise Android model has
significantly limited the abilityof previous systems to
successfully detect the full range ofmalicious information
flows in Android applications.

OVERVIEW OF ANDROID ARCHITECTURE

Android is open source platform for mobile improvement
developed by Google. The Android architecture as shown
Figure2 can be divided into five layers. The first layer from
the bottom is the kernel, which is based on the Linux 2.6
kernel. It is used as hardware abstraction layer. The motive
of Googleis using Linux is because it provides memory
organization, process management, security model,
networking, a bunch of core operating system infrastructure
that are tough and have been deep-rooted over time. The
next level up is a native or central library, which is on paper
in C and C++. Further we go to nextlevel that is the
Android runtime. The main section in the Android runtime
is the Dalvik virtual machine. It was designed particularly
for Android to assemble the need of running in an embedded
environment where you have inadequate battery, inadequate
memory, inadequate CPU. The Dalvik virtual machine runs
somewhat called DEX files. Those files are bytes’ codes that
are outcome of converting at java. classes and .jar files.
Those files when are converted to .DEX files become much
more well-organizedbytes’ code that can run very well on
small processors. They make use of memory very
effectiveness. The next level up from that are the core
libraries. They are written in java encoding language. It
contains all of the gathering classes, utilities, I/O, etc. The
upper level is the application framework. This is also
writing in java programming language. It provides concepts
of the original native libraries and Dalvik abilities to
application. Each of the Android applications runs on its
Dalvik virtual machine. [4]

Fig 2. Android Architecture [3]

ANDROID SECURITY MODLE

The entire idea behind mobile platform is the actuality that
the user can run a lot and a lot of different applications on

the device. The user might be installing and downloading a
banking application that can be doing some sensitive data.
On furtherpass the user may be installing a game application
right after to previous application and running on the same

Heena Rawal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2397-2402

© 2015-19, IJARCS All Rights Reserved 2399

device. The user obviously does not want the game
application to be able to access the sensitive data that
banking application is operation on. So, to get this Android
platform makes sure that severalapplicationsare isolated
from each other. Basically, when the user download and
install an application, it will be given a unique UID. In
addition, each oneof application will run on separate process
on separate virtual machine. Therefore, application cannot
read other application private data [4].
As it was mentioned on Section II, Android was built on the
top of the Linux, so the Linux file consent are applied.
Consent allows the user to protect his/her sensitive data that
are stored on the device. Also, it protects access to content
provider, which mostly in a database in the device. Consents
are requested by an application at install time and they are
approved or denied once at the install time which requires
the user approval [4].

ANDROID APPLICATION
Android application has an extension file. apk which is put
set for Android package. It is mainly an archive file contains
all the required files and folder in an application. Each
application is divided to four main workingsi.e. Activities,
Service, Broadcast Receivers and Content provider [4].

 Activity is essentially just a part of User Interface (UI).
So, any visual screens that allow user to see and act together
with in an Android application. It can consist of views such
as Button View, Text view Table view, etc.
 Intent Receiver which is a way for which an application
to register some code that will not be running until it’s
triggered by some external event. Developer can write some
code through XML and register it to be running when a bit
happens, e.g. network connectivity is established at a certain
time, or when the phone is ring.
 Service is a chore that does not have any user interfaces.
It is a module running in the background. For example,
when lunching Device IDs application, the first display is an
activity. But as soon as selecting a button and that will move
to other application, the service keeps running in the
background.
 Content Provider is data storage, which allows the
applications to share the data with other application.
Each application contains a manifest file named
Androidmanifest.xml. This file declares applications
components, specifies the application requirements, and
contains the permissions. These permissions will be shown
to the user, when he would be installing the application.
Figure2 is an example of the Androidmanifestfile.xml.

Fig 3 Example of Android Manifest of XML.s

The Android Manifest file also helps a user in determining
whether an application is a legitimate one or it is a malicious
one. For example, a game application does not need
permissions such as SEND_SMSM, READ_CONTACTS.
In this case, it should be known that if the application is a
legitimate or not.

A. MALWARE INFECTIVITY METHODS
There are quite a few methods that the Android devices
could be contaminated with malware. The following are four
different methods which malware can be installed on the
phone [1]:
1) Repackaging legitimate application
This is one of the most ordinary methods used by the
invaders. They may put and download genuine popular
application from the market, disassemble it, inserta
malicious code and then re-assemble and present the new

apps to the official or alternative Android market. Users
could be vulnerable by being attract to download and install
these contaminated applications. It was found that 86.0%
repackaged legitimate application including malicious
payloads after analyzing more than 1,200 Android malware
samples [1].
2) Exploiting Android’s application bug
There could be a virus in the application itself. The attacker
may use this susceptibility to compromise the phone and fix
the malware on the device.
3) Fake applications
It was also bare that there are fake applications formed to
include malware which allows attacker to contact your
mobile device. Attackers upload on the market fake
applications that seems are lawful to users but they are
infected by themselves. For example, Spy eye’s fake
security tool was found in the market which is a malware.

Heena Rawal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2397-2402

© 2015-19, IJARCS All Rights Reserved 2400

4) Remote Install
The malware could be installed in the user phone distantly.
If the attacker could compromise users’ certificate and pass
them in the market, then in this case, the malware will be
installed into the device without the user permissions. This
application will restrain malicious codes that permit attacker
to access personal data such as contacts list [1].

TOOLS FOR APPLICATION ANALYSIS

DroidSafe:
DroidSafe is a tool for accurately and precisely analyzing
sensitive unambiguous information flows in large, real-
world Android applications. DroidSafe footpaths
informationflows from sources (Android API calls that
injectsensitive information) to sinks (Android API calls that
mayleak information). We estimate DroidSafe on twoDevice
ID to freely generate a sootOutput folder that has been
increased with malicious information flow leaks by three
hostile Red Team organizations. The goal of these
organizations was to develop information leaks that would
either evade detection by static analysis tools or overcome
static analysis tools into producing improper results (by, for
example, manipulating the tool into reporting an
overwhelming number of false positive flows). DroidSafe
exactly detects all of the malicious flows in these
applications (while reporting a manageable total number of
flows). A current stateof-the-art Android information-flow
analysis system, Flow- Droid [6] + IccTA [7], in contrast,
detects only few malicious flows, and has a larger ratio of
total flows reported to true malicious flows reported.
DroidSafe fails to report only the implicit flows. Finally, we

assess DroidSafe on a suite of two Device IDs Android
explicit information-flow developed by us; DroidSafe
achieves 100% accuracy and correctness for the matching
set, compared to FlowDroid + IccTA’s 34.9% accuracy and
79.0% precision. One advantage of working with
applications that contain known inserted malicious flows is
the ability to characterize the accuracy of our analysis (i.e.,
measure how many malicious flows DroidSafe was able to
detect). As these results illustrate, DroidSafe implements an
analysis of unparalleled accuracy and precision. To the
finest of our knowledge, DroidSafe provides the first
exploitable information-flow analysis for Android
applications. [5]

APK TOOL:
A tool for reverse engineering 3rd party, closed, binary
Android apps. It can decode resources to nearly original
form and rebuild them after making some modifications. It
also makes working with an app easier because of the
project like file structure and automation of some repetitive
tasks like building apk, etc.An android application comes in
Android package (.apk) documentation. This. apk file is
nothing but a zip package of AndroidManifest.xml,
classes.dex and other resources and folders. For extracting
these features, we primarily need to reverse engineering of.
apk files. This is done using the APK TOOL .The
AndroidManifest.xml file contains a lot of features that can
be used for static analysis. While running the (.apk) on this
tool; it generates SMALI code. And by matching same
strings of both Device IDs we steal the sensitive information
from source to sink.

While running APK tool it shows like figure 3

Fig.4. Running Status of APK tool

Heena Rawal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2397-2402

© 2015-19, IJARCS All Rights Reserved 2401

PROPOSED DESIGN

Fig.5. Flow of Working tools

ANALYSIS OF RESULTS

After concluded the test on both Device IDs, we agreed that
while sending data from one application to another
application (from Source to sink) it becomes very important
for every user to check the permissions that any application
he/she is downloading really requires access to them or not.
One of the most important disadvantages of Android
applications is that without agreeing to grant access to all
the permissions, an application cannot be installed on the
device. For example, the application Game is only supposed
to play games and do nothing more. Hence it is
understandable that it does not require permission to send

messages or receive SMS. Finally, by analysis we can
extract data from source to sink while sending SMS or
receiving message from one App to another application.
Here in Fig. 4 and Fig. 5 both device Ids which are
extracting are same.
The Android Manifest file is the single file that has been
changed in order to permit the application to access more
sensitive data. 83% of the data is misplaced while transfer
from source to sink. Therefore, if the developer can have
modified Android Manifest file and implement a method or
implement an algorithm to detect the application that is
installed to the phone, then the risk of those data leakage
will be mitigated.

Fig 6. Result of Extracting Device Id

Heena Rawal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2397-2402

© 2015-19, IJARCS All Rights Reserved 2402

Fig 7. Result of Extracting Device id2

CONCLUSION

In the times of yoreSmartphone users have increased
rapidly. There are attackers whose intentionis to target the
Smartphone’s. The main reason for doing this is that lack of
user awareness concerning how their devices can be
compromised. Today, Smartphone’s like Android are not
just used as a manageable telephone. Android devices can
right to use the internet, make online bank transmissions,
deal with social networks, etc. All these functionalities of a
mobile phone appear very attractive for an attacker to gain
information of the user and use it to his/her advantage.
Therefore, users need to be conscious enough and have full
responsibilities to read and understand the permissions
requested by the application before agreeing to grant access.

REFERENCES

[1] Yajin Zhou, Xuxian Jiang, "Dissecting Android Malware:

Characterization and Evolution," Proceedings of the 33rd
IEEE Symposium on Security and Privacy (Oakland 2012),
San Francisco, CA, May2012

[2] Marry van Ullen, Jane Kessler, “Citation App for Mobile
Device” The Statistics Portal.[Online].

Available:https://www.statista.com/statistics/241587/number-
of-free-mobile-app-downloads-worldwide/.

[7] L. Li et al., “I know what leaked in your pocket: uncovering
privacy leaks on Android Apps with Static Taint Analysis,”
CoRR, 2014.

[Accessed: 2-1-
2016]

[3] Technology, "Architecture of Android OS" techneology.com,
Nov 2011. [Online].
Available:http://www.techneology.com/2011/11/architecture-
of- android-os.html.[Accessed:July 25, 2012].

[4] Frank Ableson, "Introduction to Android development the
open source appliance platform “ibm.com, 12 May 2009.
[Online]. Available:
http://www.ibm.com/developerworks/opensource/l library/os-
android-devel/. [Accessed: July 25, 2012].

[5] Michael I. Gordon∗, Deokhwan Kim∗, Jeff Perkins∗, Limei
Gilham†, Nguyen Nguyen‡, and Martin Rinard∗
“Information-Flow Analysis of Android Applications in
DroidSafe”, Available:
http://people.csail.mit.edu/mgordon/papers/droidsafe-ndss-
2015.pdf

[6] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps,” in PLDI, 2014.

