
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 520

ISSN No. 0976-5697

Malware Executables Analysis Using Static Analysis Technique for Android
Devices

Aman
M.Tech Scholar
Centre for CST

Central University of Punjab
Bathinda, India

Abstract: Malware is a worldwide epidemic. Recently, the threat of Android malware is spreading rapidly, especially due to third-party Android
application developers. The growing amount and variety of these applications cannot take conventional defences, if taken, but they are largely
ineffective, and thus, Android smartphones often remain unprotected from malwares. So, a huge need for static malware analysis is felt to
overcome these problems and to look into these malware executables deeply. In this study, a static analysis technique using SandDroid Sandbox
to detect the Android malware has been proposed. Sandboxes are used to run untested code that contain viruses or untrusted programs from third
parties. This analysis technique considers the static information including permissions, certification, code features, advertisement modules and
sensitive API calls which can characterize the behaviour of Android applications. SandDroid extracts the information (e.g., requested
permissions, certificates and code features etc.) from each application's manifest file, and respective components (Events, Services, Broadcast
Receivers) as entry points moving towards sensitive API Calls related to dangerous permissions. SandDroid is efficient since it takes only half of
time than other sandboxes to analyse Android applications for malicious patterns and gives better insight.

Keywords: Malware, Polymorphism, Metamorphism, Android, API calls, etc.

I. ANDROID

Android is a popular open-sourced operating system for
mobile devices and is currently executed on devices from a
number of different manufacturers. It contains a custom
Linux kernel and an application framework implemented in
Java that interfaces with third-party applications. Third party
application is an application that is provided by a vendor
other than the manufacturer of the device [1]. For example,
every android device comes with its own camera app, but
there have been camera apps from third parties that offers
advanced features such as a self-timer and more editing
features. The entire idea behind Android platform is the fact
that a user can customize these apps; and can run lots of
different applications on the device [2].

The paper is organized as follows: Section II discuss
about android applications, section III discuss the security
threats in android devices, and section IV presents the
classification of malwares. Section V illustrates the
detection process of malwares by explaining different
detection and analysis techniques that is followed by section
VI which discusses research methodology, whereas section
VII presents the analysis of results. Section VIII outlines the
conclusion and future scope.

II. ANDROID APPLICATIONS

Android application has an extension file .apk which
stands for Android package. It is an archive file that contains
all the necessary files and folder in an application.

Each application contains a file named
Androidmanifest.xml. This file holds components of the
application, specifies the requirements, and contains
declared permissions. Android applications are event-driven
and communicate with the device via the Android
framework API [3].

When a user installs an application, they must first accept
the permissions that the application requests. These
permissions can include access to sensitive user data or the
ability to send data to external parties.

III. SECURITY THREATS

Here, focus is on Application-based threats which is also
known as “malicious apps,” involve using apps to commit
various forms of cybercrime. A few forms of application-
based threats may include the following:

a. Malware threats that are designed with numerous
cybercriminal purposes in mind, including taking
control over smartphones, spamming texts, making
false charges to a phone bill and the like.

b. Adware that automatically creates advertisements
in order to generate a revenue stream for its creator.

IV. CLASSIFICATION OF ATTACKS

There are lots of attack vectors that exists in mobile
devices which can compromises the security [3]. Three main
categories of the attacks include – malware attacks,
Grayware attacks and spyware attacks described as:

a. Malware- These are applications that are
specifically designed to disrupt, damage, or gain
unauthorized access to a device [4].

b. Grayware: Grayware are the applications which
have annoying, undesirable, or undisclosed
behavior but do not fall into any of the major threat
categories [4].

c. Spyware: Spyware are the application, which are
installed on a user's device secretly to collect
personal information or to monitor his activities
[4].

Aman, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,520-526

© 2015-19, IJARCS All Rights Reserved 521

V. MALWARE DETECTION AND ANALYSIS
TECHNIQUES

There are several methods to infect mobile devices with
malware. E.g. Repackaging legitimate application,
Exploiting bugs in android applications, and Fake
applications [5].

The need of analyzing the malwares to protect the
sensitive information from being stolen was realized.
Malware analysis is the process of studying the source code
of the application, behavior, and functionality of malware so
that severity of attack can be measured. Malware analysis is
a necessary step to be able to develop effective detection
techniques for malicious code.

1) Static Analysis Technique
Static analysis is a technique to detect malicious

behavior by analyzing the code segments. This technique
has a major drawback of code obfuscation and dynamic
code loading [6]. The advantages of static analysis is that the
cost of computation is low and low resource consumption.
However, code obfuscation makes the pattern matching a
major drawback in detecting the malicious behavior [3].

2) Dynamic Analysis
Dynamic analysis is a detection technique aimed at

evaluating malware by executing the application in a real
environment. The main advantage of this technique is it
detects dynamic code loading and records the application
behavior during runtime [7]. This technique fails to
determine the malicious code in the applications (TABLE
II) that were taken for the malware analysis. There are
chances that the applications can fail to execute the
malicious code while recording the parameters.
Additionally, this technique is hard to implement as
compared to static analysis, due to the overhead of
executing the application [8].

3) Permission Based Analysis
When android devices came in the picture, it was

observed that each Android app has to explicitly declare the
permissions it required in its manifest file. Install time
permissions should have more user control, so that user can
decide which permissions to allow and which one to deny
[1].

4) Hybrid Analysis
Hybrid analysis combines the aspects of both static and

dynamic analysis that was beyond the reach of these
techniques standalone. This technique has the benefit of
bringing the malicious code under the analyst’s control
before its execution that was not possible with any of the
techniques before.

Figure 1. Malware detection techniques.

VI. METHODOLOGY

Analyzing applications without executing it is called
static analysis. Static analysis investigates downloaded apps

by inspecting source code and specific patterns.
Implementation of static analysis is lightweight enough to
run on-device. Code has been analyzed using two
approaches.

1) Reverse engineering approach –
Reverse engineering (back engineering) is the process of

disassembling the applications and examine or analyze in
detail to discover the concepts involved in designing to
know the exact working [9].

In this approach, application is first Decompressed and
decompiled to find out specific patterns in application code.
Therefore, the major drawback of this technique is that it's
time-consuming and can find out only limited information.
Methodology:
i. Prepare the simulation environment. (TABLE I)

ii. Prepare the data set of various applications from
different sources so that these applications can be
analyzed for malicious patterns. (TABLE II)

iii. Prepare dual-boot system with Kali Linux and
Windows.

iv. Decompression and Decompilation of
Applications:
Decompress the android application that is in .APK
format because it holds Classes.dex file. Need to
separate out Classes.dex is that this file holds the
actual bytecode of the application which is typically
in the machine language and not readable by human
beings [10].
Once classes.dex file is extracted from the android
application, it is converted into java language file
named output-jar.jar which is easily readable. The
commands for decompression and decompilation are
given as below:
• Decompression Command:
Unzip [Filename].apk classes.dex
This command will first unzip the APK file and then,
will separate out classes.dex from it.
• Decompilation Command:
D2j-dex2jar -f -o output-jar.jar [Filename].apk
By using this command, classes.dex file will be
converted to .jar file named output-jar.jar.

v. Then output-jar.jar file can be seen in JD-GUI that is
a graphical interface to check the code.

vi. Analyze for malicious code based on patterns that are
taken in consideration. (TABLE I)

S.No.

Table I. Simulation Environment

No. of
Applications

Approaches used in
Static Analysis

Parameters to be
observed

1.

40

Reverse Engineering
Approach

Dangerous Permissions

Application Events

2. Sandbox Approach
(SandDroid)

Dangerous Permissions

Application Events

Component analysis

Advertising modules

API calls

Parameters to be checked:
In Table I, these parameters provide vulnerability in the
application. Here is why these parameters are checked:

Analysis

Techniques

Static Analysis

Dynamic
Analysis

Pattern Based

Analysis

Hybrid

Analysis

Aman, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,520-526

© 2015-19, IJARCS All Rights Reserved 522

• Dangerous Permission Analysis: Extract
permissions (include customized permissions) and
detect if the declared permission is used or is present
unnecessarily. Access to dangerous permission can
leak user’s data [11].

• Application Events: Extract applications event that
can trigger the malware at specified condition or
time.

• Component Analysis: Check dynamic loader usage,
broadcast receivers, etc [11].

• Advertisement Module Analysis: Extract all the
advertisement modules. Ad modules can annoy the
users with lots of ads or can be used to steal user’s
sensitive information by redirecting them to
phishing web pages [11].

• Sensitive API Analysis: List all the sensitive APIs
(Application Program Interface) and the caller code
path. API tells how the app modules will interact
with each other [11].

Patterns

Figure 2. Methodology [3]

2) Sandbox approach –
Given the enormous growth of Android malware in the

wild, more and more applications must be analyzed in a
limited period by the security researchers to understand the
purpose of the application, finding out malicious patterns
and to develop countermeasures. Until recently, the analysis
was done manually by using reverse engineering [12]. This
process is very time-consuming and error-prone because it
depends on the skill-set of the analyst [12]. Therefore, tools
for automatic analysis of applications were developed, i.e.
Sandboxes. Sandboxes are automated tools used to run the
applications from third parties and untested code that is
supposed to have malware [1].

Static analysis with sandbox investigates applications
properties/patterns that cannot be investigated reverse
engineering technique [11].
Methodology:
i. Prepare the simulation environment. (TABLE I)

ii. Prepare the data set of various applications from
different sources so that these applications can be
analyzed for malicious patterns. (TABLE II)

iii. Selection of the sandbox out of pre-existing
sandboxes [11].

SandDroid which is a web interface sandbox is
chosen for static analysis on the basis of result
features it provides. Here is the environment of
SandDroid:

Figure 3. Application uploading in SandDroid

iv. Simulate the applications on SandDroid by
uploading them as shown in figure 3.

v. Analyze for the malicious patterns e.g. Dangerous
permissions, events, API calls, etc. (TABLE I)

In Table II, a list of 40 Android applications that is
taken as dataset is shown. The list is obtained by
carefully examining the related security announcements
and threat reports from existing mobile antivirus
companies and by looking at the permissions accessed
by the app if seemed suspicious. The number of
samples in dataset collection differentiates the source
from where the application is discovered, i.e., either
from the official (Play Store) or alternative Android
Markets (Third party stores).

Table II.

Application Name

Android Applications Dataset

Official Market Alternate Market

 Fake Call 
 Hair Care Tips 

Payson UT Energy Conservation  
Accounting Ratio Calculator  
Humphrey Solitaire  
PIP Lock Screen Passcode  
Mobile Summarizr  
Traveline Scotland  
GO SMS Pro  
Fish Adventure
Aquarium

 

Cargo Ship Car
Transporter 3D

 

GO Keyboard Pink
Hearts Theme

 

SAMASTHA
Directory

 

Love or Friendship
Calculator

 

Fingerprint Age
Detector Prank

 

UnBlock The Block- Puzzle Game  
Runtastic Push-Ups PRO Trainer  
GBWhatsapp PLUS  ×
AIO File Manager  

신한 S뱅크 mini  

Simple Notepad  
XPOSED IMEI
Changer

 

Kaon Biz Apps  
Mermaid kiss 2015  
Christmas Live  

APK

 Logfiles

Run in Sandbox

Dangerous Permissions
Application Events

Component Analysis
Ads Modules

API calls

androidmanif
est.xml

Classes.dex

Resources

Pictures

Layout.xml

Libraries

Decompress APK

Decompile APK

Find for Patterns

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjfxPuRuKrPAhWIKo8KHamHC_YQFggnMAI&url=http%3A%2F%2Fwww.apk16.com%2Fapp%2Fcom.enerlyte.paysonutah.html&usg=AFQjCNF-UHIk9kgyV9zHTvSDAilp3gw23A&sig2=k2n9Uy4oAutj7GIeajQyBA&bvm=bv.133700528,d.c2I�

Aman, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,520-526

© 2015-19, IJARCS All Rights Reserved 523

Wallpaper Free
Alarm Anti Theft
Screen Lock

 

Atlantis Diamonds  
Password
Terminator

 

Warrior Rush  
 Uber 

Cartoon Photo Frames for Kids  
Spotify Music  ×
CamScanner -Phone PDF Creator  
Messenger  
Free to Read
Detective Novels

 

Block Puzzle Quest  
Space Calculator  
GoingDutch  
Camera360  
Gaukeen  ×

VII. ANALYSIS OF RESULTS

In this section, once the application data is gone through
the both analysis techniques i.e. reverse engineering
technique and sandbox approach, result tables are created
which contains all the parameters which needed to be
checked for the malicious behaviour.

Table III shows the permissions and system wide events
used by each application. Applications are analyzed for
dangerous permissions and events manually using reverse
engineering. There existed many permissions in the
application code which were not used dynamically
anywhere and those permissions are taken as threat level to
DANGEROUS. Then, there exists permissions that are not
necessary for the application to run but still its access is
taken from the user at installation time [13]. Application
events are also checked for when the malicious activity
triggers in the applications.

i. EXPERIMENT: STATIC ANALYSIS USING
REVERSE ENGINEERING

Analyzing applications with Reverse engineering is totally
hit and trial method which maybe right or wrong.
• Dangerous Permissions

In permissions, SYSTEM_ALERT_WINDOW is
most dangerous permission that is used by three
applications, i.e. AIO File Manager, Warrior Rush and
Camera 360. It means while using these applications, user
will have an alert on his device screen showing some
warning that is not a good practice by any app. Therefore,
only this permission is kept in malicious permission.
• Application Events

An Android malware typically relies on the built-in
support of automated event notification/callbacks by
registering for the system-wide events, which can flexibly
trigger or launch its payloads. Among all available system
events, BOOT_COMPLETED is the most interested one to
existing Android event in android apps. This particular event
is triggered as soon as system is booted up i.e. booting
process which is a perfect timing for malware to initiate its
background services [1].

Out of these three applications which has
SYSTEM_ALERT_WINDOW permission, two applications

start themselves at the BOOT_COMPLETED event. This
system-wide Android event can trigger Android malware.

Therefore, two applications are kept in malicious
category based on dangerous permissions and events, i.e.
AIO File Manager and Warrior Rush.

But as all the code was studied manually and using this
technique, it’s not possible to get access of advertising
modules and API calls. To achieve this, all the application
data need to go through more extensive static analysis which
is performed in sandbox and will prove better results.

ii. EXPERIMENT: STATIC ANALYSIS USING
SANDDROID

Table IV shows more detailed results as compared to table
III (Reverse engineering approach).
• Dangerous Permissions
SYSTEM_ALERT_WINDOWS permission is used by

five applications, i.e. AIO File Manager, Atlantis Diamonds,
Password Terminator, Warrior Rush and Camera 360. All
these five applications also fetch the information about
running tasks on the device which is totally unacceptable
from the point of user’s privacy.
• Application Events
All these applications also trigger the event at

BOOT_COMPLETED which makes sure that these five
applications come under malicious category and are capable
of leaking user sensitive data.
• Advertising Modules
Out of these five applications, two apps have ad modules

present in them which means these ads will annoy the user
which using the app or redirect them to any phishing web
page.

Therefore, these five applications, AIO File Manager,
Atlantis Diamonds, Password Terminator, Warrior Rush and
Camera 360 is kept under malicious apps.

VIII. CONCLUSION

With the rapid increase of smartphones equipped with a
lot of features, the number of mobile malware is increasing.
Since Android has been introduced, it has been (and still is)
explored for its inherent security mechanisms. It is believed
that additional security mechanisms should be applied to
Android. In this paper, two static malware analysis
technique for Android applications is presented for the
applications that seems suspicious or malicious using
reverse engineering and sandbox. By characterizing these
malware samples from various aspects, it’s analyzed that
SandDroid [11] detects three applications more as malicious
applications than the reverse engineering approach and
provide much results faster results.

 However, main question arises if these applications can
get user’s information up to this level – Is user’s sensitive
information secure on the internet? What these applications
would do with this sensitive information from the user? To
find out answer to these questions, more detailed analysis is
needed which can monitor the application behavior and
network data on runtime, i.e. Dynamic analysis.

 Since the mobile application market and android OS,
which is in high demand at the present time is not static and
this makes mobile devices more vulnerable. Therefore,
security issues and anti-malware are to be revised regularly
to ensure the security as no technique gives complete
malware protection.

Aman, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,520-526

© 2015-19, IJARCS All Rights Reserved 524

Table III. Results of Static Analysis using Reverse Engineering

S.No. Dangerous Permissions Application Events
INTERNET AUDIO/

CAMERA
STORAGE SYSTEM_

ALERT_WINDOW
CONTACT/
CALL/SMS

SHORTCUT/
NETWORK

MAIN BOOT PKG MEDIA CONNECT

1 YES YES YES NO NO NO YES NO NO NO NO
2 YES YES YES NO NO NO YES NO NO NO NO
3 YES NO NO NO NO NO NO NO NO NO NO
4 YES NO NO NO NO NO YES NO NO NO NO
5 YES NO YES NO NO YES YES NO NO NO NO
6 YES NO YES NO NO NO YES NO NO NO NO
7 NO NO NO NO NO NO YES NO NO NO NO
8 YES NO NO NO NO YES NO NO NO NO NO
9 NO NO YES NO YES YES YES NO NO NO NO

10 YES NO YES NO NO NO YES NO NO NO NO
11 YES NO YES NO NO NO YES NO NO NO NO
12 YES NO NO NO NO NO YES NO NO NO NO
13 YES NO NO NO NO YES YES NO NO NO NO
14 YES YES YES NO NO NO YES NO NO NO NO
15 YES YES YES NO NO NO YES NO NO NO NO
16 YES YES YES NO NO NO NO NO NO NO NO
17 YES NO YES NO NO NO YES NO NO NO NO
18 YES YES NO NO YES YES NO YES YES YES NO
19 YES YES YES YES YES YES YES YES YES NO NO
20 YES YES YES NO YES YES YES NO NO NO NO
21 NO NO YES NO NO YES NO NO NO NO NO
22 NO NO NO NO NO NO YES NO NO NO NO
23 YES NO YES NO NO YES NO NO NO NO NO
24 YES NO NO NO NO NO YES YES NO NO NO
25 YES NO NO NO NO YES YES YES NO NO NO
26 NO NO NO NO NO YES YES YES NO NO NO
27 YES NO YES YES NO NO YES NO YES NO YES
28 YES NO NO NO NO YES YES YES YES NO YES
29 YES NO YES YES NO NO YES YES YES NO YES
30 YES NO YES NO YES YES NO NO YES YES YES
31 YES NO YES NO NO NO YES NO NO NO NO
32 YES NO YES NO YES NO NO NO NO NO NO
33 YES YES YES NO NO NO YES NO NO NO NO
34 NO YES YES NO YES YES YES YES NO NO NO
35 YES NO YES NO NO YES YES YES NO NO NO
36 YES NO YES NO NO YES NO NO YES NO NO
37 YES NO NO NO NO NO YES NO NO NO NO
38 YES NO NO NO YES NO YES NO NO NO NO
39 YES YES YES YES NO YES YES NO NO NO NO
40 YES NO YES NO NO NO YES NO NO NO NO

Table IV. Results of Static Analysis using SanDroid

Dangerous Permissions S.No. Application Events Ad
Modules

Sensitive
API

INT AUDIO/
CAMERA

STORAGE SYSTEM_
ALERT_

WINDOW

CONTACT/
CALL/SMS/

SHORTCUT/
NETWORK

MAIN BOOT PKG MEDIA CONNECT

1 YES YES YES NO NO NO YES NO NO NO NO NO YES

2 YES YES YES NO NO NO YES NO NO NO NO YES YES

3 YES NO NO NO NO NO YES NO NO NO NO NO NO

4 YES NO NO NO NO NO YES NO NO NO NO YES YES

5 YES NO YES NO NO YES YES NO NO NO NO YES YES

6 YES NO YES NO NO NO YES YES NO NO NO YES YES

7 NO NO NO NO NO NO YES NO NO NO NO NO YES

8 YES NO NO NO NO YES NO NO NO NO NO YES YES

9 NO NO YES NO YES YES YES NO NO NO NO NO YES

10 YES NO YES NO NO NO YES NO NO NO NO YES YES

11 YES NO YES NO NO NO YES NO NO NO NO YES YES

12 YES NO NO NO NO NO YES NO NO NO NO YES YES

Aman, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,520-526

© 2015-19, IJARCS All Rights Reserved 525

13 YES NO NO NO NO YES YES NO NO NO NO YES YES

14 YES YES YES NO NO NO YES NO NO NO NO YES YES

15 YES YES YES NO NO NO YES NO NO NO NO YES YES

16 YES YES YES NO NO NO YES NO NO NO NO YES YES

17 YES NO YES NO NO NO YES NO NO NO NO YES YES

18 YES YES NO NO YES YES YES YES YES YES NO YES YES

19 YES YES YES YES YES YES YES YES YES NO NO YES YES

20 YES YES YES NO YES YES YES NO NO NO NO NO YES

21 NO NO YES NO NO YES NO NO NO NO NO NO YES

22 NO NO NO NO NO NO YES NO NO NO NO YES YES

23 YES NO YES NO NO YES NO NO NO NO NO YES YES

24 YES NO NO NO NO NO YES YES NO NO NO YES YES

25 YES NO NO NO NO YES YES YES NO NO NO YES YES

26 NO NO NO NO NO YES YES YES NO NO NO YES YES

27 YES NO YES YES NO NO YES NO YES NO YES NO YES

28 YES NO NO NO NO YES YES YES YES NO YES YES YES

29 YES NO YES YES NO NO YES YES YES NO YES YES YES

30 YES NO YES NO YES YES NO NO YES YES YES YES YES

31 YES NO YES NO NO NO YES NO NO NO NO YES YES

32 YES NO YES NO YES NO NO NO NO NO NO YES YES

33 YES YES YES NO NO NO YES NO NO NO NO NO YES

34 NO YES YES NO YES YES YES YES NO NO NO NO YES

35 YES NO YES NO NO YES YES YES NO NO NO YES YES

36 YES NO YES NO NO YES NO NO YES NO NO YES YES

37 YES NO NO NO NO NO YES NO NO NO NO YES YES

38 YES NO NO NO YES NO YES NO NO NO NO YES YES

39 YES YES YES YES NO YES YES NO NO NO NO NO YES

40 YES NO YES NO NO NO YES NO NO NO NO YES YES

IX. ACKNOWLEDGMENT

X. REFERENCES

Special thanks to all the author whose work has been used
as reference and all technical and blog writers for their online
tutorials which was handy during research work.

[1] T. Blä sing, L. Batyuk, A. Schmidt, S. Camtepe and S.

Albayrak, "An Android Application Sandbox system for
suspicious software detection", 2010 5th International
Conference on Malicious and Unwanted Software, pp. 55-
62, 2010.

[2] K. A. M. W. Rubayyi Alghamdi, "Android Platform
Malware Analysis," International Journal of Advanced
Computer Science and Applications, vol. 6, no. 1, pp. 140-
146, 2015.

[3] P. M. G. Sarita T. Sawale, "Review of Different Techniques
Used For," International Journal of Application or
Innovation in Engineering & Management, vol. 5, no. 12,
pp. 93-99, 2016.

[4] D. B. Lovi Dua, "Review On Mobile Threats And
Detection Techniques," International Journal of Distributed
and Parallel Systems, vol. 5, no. 4, pp. 21-29, 2014.

[5] V. Rastogi, Y. Chen and W. Enck, "AppsPlayground",
Proceedings of the third ACM conference on Data and
application security and privacy - CODASPY '13, pp. 209-
220, 2013.

[6] D. Wu, C. Mao, T. Wei, H. Lee and K. Wu, "DroidMat:
Android Malware Detection through Manifest and API
Calls Tracing", 2012 Seventh Asia Joint Conference on
Information Security, pp. 62-69, 2012.

[7] K. Michael and J. Sametinger, "Permission tracking in
Android", In The Sixth International Conference on Mobile
Ubiquitous Computing, Systems, Services and
Technologies UBICOMM, pp. 148-155, 2012.

[8] L. Min and Q. Cao, "Runtime-Based Behavior Dynamic
Analysis System for Android Malware Detection",
Advanced Materials Research, vol. 756-759, pp. 2220-
2225, 2013.

[9] Dexaresources.com. (2017). Reverse Engineering – Dexa
Resources LLC: Engineering Consulting | Design,
Integration and Contract Manufacturing Services. [online]
Available at: https://www.dexaresources.com/reverse-
engineering/ [Accessed 17 Feb. 2017].

Aman, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,520-526

© 2015-19, IJARCS All Rights Reserved 526

[10] Shabtai, Y. Fledel, U. Kanonov, Y. Elovici and S. Dolev,
"Google Android: A State-of-the-Art Review of Security
Mechanisms", arXiv preprint arXiv:0912.5101, 2009.

[11] Sanddroid.xjtu.edu.cn. (2016). SandDroid. [online]
Available at: http://sanddroid.xjtu.edu.cn/ [Accessed 13
Nov. 2016].

[12] Z. Yajin, Z. Wang, W. Zhou and X. Jiang, "Zhou, Yajin,
Zhi Wang, Wu Zhou, and Xuxian Jiang. "Hey, You, Get

Off of My Market: Detecting Malicious Apps in Official
and Alternative Android Markets.", In NDSS, vol. 25, no.
4, pp. 50-52, 2016.

[13] T. S. F. E. D. A. J. H. Michael Spreitzenbarth, "Mobile-
Sandbox: combining static and dynamic analysis,"
International Journal of Information Security, vol. 14, no. 1,
pp. 141-156, 2015.

	ANDROID
	ANDROID APPLICATIONS
	SECURITY THREATS
	CLASSIFICATION OF ATTACKS
	MALWARE DETECTION AND ANALYSIS TECHNIQUES
	METHODOLOGY
	Reverse engineering approach –
	Figure 2. Methodology [3]
	Sandbox approach –

	ANALYSIS OF RESULTS
	EXPERIMENT: STATIC ANALYSIS USING REVERSE ENGINEERING
	EXPERIMENT: STATIC ANALYSIS USING SANDDROID

	CONCLUSION
	Acknowledgment
	References

