
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

SURVEY REPORT

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 469

ISSN No. 0976-5697

Survey on Natural Language Database Interfaces

Abhilasha Gautam
Department of Computer Science,

Ambedkar Institute of Advanced Communication
Technologies & Research, Delhi, India

Dr. Shailender Kumar
Department of Computer Science,

Ambedkar Institute of Advanced Communication
Technologies & Research, Delhi, India

Satvic Mittal
Department of Computer Science,

Ambedkar Institute of Advanced Communication
Technologies & Research, Delhi, India

Abstract: This is the era of information technology and most of our data or information is stored in the form of databases on our computers. To
extract information from our database we need to use a structured language such as SQL (Structured Query Language). Thus only the person
who has a good knowledge of the SQL language can interact with the database. Natural language can be used to retrieve the information from
the database in an easier way. But computers cannot understand the natural language without any external help. Thus Natural language database
interfaces(NLDBI) were developed, that converts the query given by the user in natural language into a language that is understood by the
computer's database management system i.e. Database Query Language(DBQL). In this paper, we present a literature review of various Natural
Language Database interfaces which have been built over the time and the new techniques that were added every time to make the interface
faster than before. Then we present some future work that can be done in the field of Natural language Database interfaces to make them faster,
reliable, robust and easier.

Keywords: Natural Language Database Interface (NLDBI); Database Query Language (DBQL); Structure Query language (SQL); Natural
Language Processing (NLP); Artificial Intelligence(AI)

I. INTRODUCTION

Natural Language processing (NLP) [2] have become one

of those techniques which are these days frequently used to
interact with the computer using the native language used by
the humans. Natural language processing comes under the
study of Artificial Intelligence [2] which can be used for the
retrieval of information, machine translation, and the linguistic
analysis.

These days most of the work is done on computers. Thus
the Natural language Processing[2] came into the picture to
increase the human-computer interaction so that we do not
need to learn the computer languages, commands, and the
complex procedures. If we can interact with our computer in
our natural language then it would make all the work way
easier for even those who do not have a good knowledge of
computers which was the main objective of Natural language
processing.

Now coming to the storage of information on the
computers. All the information is stored in the form of
databases thus there was a great need to develop something
through which we can interact with our databases using our
natural language. This problem was resolved by using natural
language processing techniques and developing an interface
which can be used to retrieve information from the database
using natural language and those interfaces are known as
Natural Language Database Interfaces (NLDBI) [1].

The main objective of the NLDBIs was to make the
retrieval of information easier using NL. While using an
NLDBI the user need not have a good knowledge of
programming languages or DBQL to have the access to data
from the database. Earlier people used to learn the DBQL to
interact with their database management systems but after the

development of NLDBIs this work became easier but a lot of
research is still to be done in the field of Natural Language
Database Interfaces to make them faster and generic.

When you give a query in an NLDBI then it first
automatically understands the natural language not just
semantically but syntactically too and then convert the parsed
natural language into a query that is accepted by the Database
Management System i.e. a query in SQL. Thus a grammar
needs to be developed for every NLDBI for a particular
domain. This problem is now being dealt by using a Generic
Natural Language Interface [3] which can take any type of
natural language query and then convert it into a SQL query.
We give details about this interface in further sections.

Our paper further is organized as follows .Section 2
presents the literature review of different NLDBIs that have
been developed over the time. In section 3 we present the basic
architecture of Natural Language Database Interface. Section 4
represents the methodologies on which mostly NLDBIs are
based. Comparative analysis is done between various NLDBIs
that have been developed over time in section 5. In section 6
we give an overview of the advantages and disadvantages of
using NLDBIs. Section 7 presents the conclusion and possible
extensions that can be made in the field of NLDBIs.

II. LITERATURE REVIEW

Various NLDBIs have been developed over time and a lot

of research has been done and still going in this field. Some of
the work that has been in this field and some popular NLDBIs
that have been developed over time are as follows:-
A. LADDER

The LADDER[4] system was a natural language interface
to a database developed by the joint efforts of Rich Fikes,

Abhilasha Gautam et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,469-473

© 2015-19, IJARCS All Rights Reserved 470

Koichi Furukawa ,Gary Hendrix, Paul , Nils Nilsson, Bill
Paxton, Jane Robinson, Daniel Sagalowicz, Jonathan Slocum,
and Mike Wilber. It was designed specifically for information
about US Navy ships. The LADDER[4] system parse
questions to query a distributed database using semantic
grammar. The system interleaves syntactic processing and
semantic processing using semantic grammars techniques. For
translating a question, first the input is parsed and the parse
tree is then mapped to a database query.

This NLDBI have a three layered architecture. The first
layer is the Informal Natural Language Access to Navy Data
(INLAND). INLAND [4] accepts the query in natural
language and produces a query to databases. The queries from
the INLAND are inputted to the Intelligent Data Access (IDA)
[4], which is the second layer of LADDER. The INLAND
layer translates a fragment of a query to IDA for each lower
level syntactic unit in the English language input query and
these fragments are then merged to higher level syntactic units
to be recognized. At the sentence level, the merged fragments
are used as command for IDA. IDA would build an answer
that is in accordance to the user’s original queries. IDA also
have the responsibility plan the correct sequence of file
queries. File Access Manager (FAM) [4] is the third layer of
the LADDER system. The responsibility of FAM is to locate
generic files and to manage their access mechanism in a
distributed database.

The LADDER system was employed in LISP [4]. The
LADDER system was able to accurately process a database
corresponding to a relational database with 14 tables and 100
attributes.

B. NaLIX

NaLIX (Natural Language Interface for an XML Database)
is a Generic interactive natural language query interface to
database system developed in 2006 by Ann Arbor, Huahai
Yang, Yunyao Liand H. V. Jagadish at the University of
Michigan.

NaLIX is system which uses Extensible markup language
[5] database with Schema Free XQuery as the database query
language. The NaLIX system consists of parse tree classifier,
validator and a translator, which is responsible for query
translation from natural language queries to XQuery [5]. For
translation of natural language queries into corresponding
XQuery expressions, three main steps are involved.

First is Parse Tree Classifier which identifies the word or
phrase in the original natural language query which can be
translated into corresponding components of XQuery [5], and
is defined as a token (that is if it matches a XQuery
component) or a marker (if it does not). Second is the Parse
Tree Validator that validates then classifies parse tree and
checks if the parse tree obtained can be mapped into XQuery
or not. It also makes sure that the elements, attribute names
and values present in the user query are found in the database.
Third is the Parse Tree Translator which utilizes the structure
of natural language query which is represented by the parse
tree to generate the XQuery expression.

Meaningful Lowest Common Ancestor Structure
(MLCAS) [5] of a set of nodes, is the concept behind the
Schema free XQuery. That is for a given collection of
keywords, each keyword has several candidate XML elements
to relate. The MLCAS of these elements then automatically
finds the relationships among these elements. The main

advantage of Schema Free XQuery is that it does not require to
map the query to the precise database schema.

C. PRECISE

Precise is a system developed by Ana-Maria Popescu,
Oren Etzioni, David Ko, and Henry Kautz at the University of
Washington in 2002. Precise reduces the interpretation of
semantics in Natural Language Interface to a graph matching
problem [6]. Precise returns a correct Structured Query
Language (SQL) query for a broad class of natural language
questions. Precise maps the word and phrases in the question
to the corresponding database by reducing it to a graph
matching problem and then computing the maximum flow in
the graph. PRECISE was evaluated on GEO-Query [6] domain
and hence was domain specific.

The precise Architecture involves many modules. First is
the lexicon (1, 6) which is used to get set of ordered pairs in
the form (token, database elements). This set of database
elements is automatically extracted from the database. Then
the natural language question is mapped to the set of all
possible complete tokenizations of the question and to each
token the types of database element is assigned. Next the
matcher is used to generate the graph from the natural
language question through the tokens generated by the
tokenizer. It involves a constraint that all Token Value and
Token Attribute must be matched with a subset of DB Value
and DB Attribute. The matcher runs in polynomial time in the
length of the natural language question. Then a parser is used
to interpret the attachment relationships between the words of
the question. Finally, the query generator generates a well
formed SQL query using the database elements selected by the
matcher.

Precise when compared with Microsoft’s English Query
product it was found that Precise made fewer errors by a factor
of four or more. Although Precise is very accurate, it has its
own weaknesses. One weakness is that though it achieves high
accuracy in semantic question, this accuracy comes at the cost
of recall. Second problem is that since Precise is based on
heuristic approach, the system is not able to handle nested
structures.

D. WASP
WASP stands for Word Alignment-based Semantic Parsing [7]
developed by Yuk Wah Wong at the University of Texas,
Austin. The system was developed to address a comprehensive
goal for building a formal, complete, symbolic and meaningful
representation of a natural language sentence, and hence could
be applied to NLDBI domain. Prolog [7] is a predicate logic
which is used as the formal query language. Given a set of
natural language sentences marked up with their correct formal
query language, WASP builds a semantic parser using the
corpus. Statistical machine translation technique is used for
the building the knowledge base and therefore WASP does not
require any prior knowledge of the syntax. WASP was specific
to GEO-QUERY (6, 7) domain. GEO- QUERY corpus
contains 250 questions in the test set and of 880 questions in
the training set, which are combined together into one larger
data set. Each data set was divided in to 10 equal-sized subsets,
and the system performance was estimated by a standard 10-
fold cross validation. WASP achieved 86.14% precision and
75.00% recall in the GEOQUERY (6, 7) domain. The system
was also tested on a variety of other natural languages such as
English, Spanish, Japanese and Turkish. The ability of WASP

Abhilasha Gautam et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,469-473

© 2015-19, IJARCS All Rights Reserved 471

to build a semantic parser from annotated corpora [7] gives it
strength. WASP uses statistical machine translation with
minimal supervision. Due to this, the system is not required to
manually develop a grammar in different domains.

E. NLI-RDB

A natural language interface is created using
Conversational Agent (CA)[8], Information Extraction (IE),
and Object Relational Mapping (ORM) framework. CA is
used to remove ambiguity from the user’s queries and
improving the user interaction. IE is used in extraction of
named entities for mapping natural language queries into
database queries. Hibernate framework is used as the ORM [8]
framework. Concepts Object Oriented Paradigms (OOPs)
differ from Relational Database (RDBs), thus hibernate
reduces the complexity in generating SQL statements.

The System contains five components. The first component
is the User Interface which provide the interaction between the
user and the application. Next component is the Text
Preparation which prepares the text for analyzing by first
cleaning the text of unnecessary characters and words, and
then tokenizing them. Third component is the Engine
Algorithm [8]. Engine algorithm is the main component which
generates the agent response and Hibernate Query from the
natural language query. It uses Information Extraction to
extract entities like object names and their attributes.
Conversational Agent is used to match the tokenized text with
predefined patterns to either guide the user through the
responses or to recognize object attributes with their possible
conditions. Then the HQL generator [8] generates the HQL
query using the extracted information and the matched
patterns. The fourth component is the ORM framework, that
is, Hibernate. Hibernate maps an object oriented model to a
relational database. The HQL query is used by Hibernate to
generate the SQL query, which is then executed on a relational
database. The results are then presented to the user through the
user interface. Fifth and last component is the Relational
Database itself which holds the domain information. That is,
all the entities with its attributes and values and stored in the
form of tables as a database.

III. ARCHITECTURE

Figure shows the various components that can be found in
every NLDBI and how a basic NLDBI works and the stages of
the natural query processing in an NLDBI.

 Figure 1: Architecture of NLDBI
A. Selecting a Template (Heading 2)

IV. METHODOLOGY

Various methodologies are used for developing different
types of natural language database interfaces. Different
techniques are still being developed to make the use of
NLDBIs much easier and faster. Some of the common
techniques that act as ground for various other techniques are
as follows:-

A. Pattern-Matching

While developing an NLDBI the prototype systems were
mainly dependent on pattern matching since every user input
has to be directly matched with the database. The system can
build a query only when a match occurs between a pattern and
given user input. The limitations of the pattern matching
process are that it has to be made specifically for each
database since some details of the database are intermixed
within the code of the system. Also, these type of systems
works only for less complex and small number of patterns.
Some of the advantages of pattern-matching systems are that
they are simple as compared to others since there is no need
for parsing and interpretation modules like the other systems.
When the user input is not in range with the given sentences
for which the system is designed then sometimes pattern-
matching systems [1] even come up with some kind of
justification. The best example till date for the pattern-
matching approach is ELIZA [13]. ELIZA rephrased the user
input into questions and the gives an answer to those
questions.

B. Syntax-Based Systems

In systems which uses syntax based approach [9], a parse
tree is generated. The parse tree is generated by parsing the
query given by the user and then it is directly mapped to and
expression in DBQL. In this approach the syntactic structure
of user’s questions is defined by the generated grammar. In
this approach the detailed information about the structure of
the sentence is provided which is the main advantage of
syntax-based systems. This parse tree starts from a single word
and its part of speech extraction, then a cluster of words is
formed to form a phrase structure, and then these phrases are
combined to form complex phrases. A continuous check on
the structure is done till the complete sentence is built and
accessed. This information can be used to map certain
production rules with their semantic meaning. Some systems
that were developed using syntax-based approach are LUNAR
[12], LADDER [4] etc.

C. Semantic-Based Systems

Semantic-based systems [11] are similar to the syntax-
based systems except the fact that the parse tree generated in
semantic based approach are generally simpler than the ones in
syntax-based approach. The parse trees are made simpler by
using several approaches like removing the unnecessary nodes
or by combining them. In semantic based systems without the
need of complex parse tree structures, we can reflect the
semantic representation in a better way using semantic
grammar [11]. The only difficulty which we face in this
technique is that we need to have a prior knowledge of domain
elements. Semantic grammar approach results into less
ambiguity by providing a special way of naming the tree node
as compared to the syntax-based approach.

Abhilasha Gautam et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,469-473

© 2015-19, IJARCS All Rights Reserved 472

D. Intermediate Representation Languages
This approach is used widely these days because it is easier

to use and less domain specific as compared to the other
approaches. In this approach user input is not directly
converted into Database query language, rather it is first
converted into an intermediate logical query [3] which is then
transformed into some DBQL. Directly translating a sentence
in natural language into query language using syntax-based
approach is very difficult and the reason behind the upcoming
of this approach. In this approach, a sentence in the natural
language is mapped into logical query first and then this
logical query is translated into general DBQl such as SQL. A
good example of this approach is the NLDBI system
developed at the University of Essex [3] which have a multi-
stage transformation process. In this process, we can also use
more than one intermediate representation languages.

V. COMPARATIVE ANALYSIS

 All the parameters on the basis of which we have
compared the systems are explained as follows: -

Table I: Comparative analysis of various NLDBIs

Systems

Properties

LAD
DER
(4)

PRE
CISE

(5)

NALI
X (6)

WA
SP
(7)

NLI-
RDB
(8)

RELIABI

LITY

LOW

HIGH

LOW

HI
GH

HIGH

DOMAIN
DEPEND

ENT

YES

YES

NO

YE
S

NO

ACCURA

CY

LOW

HIGH

LOW

HI
GH

HIGH

DOMAIN

US
NAV

Y
SHIP

S

GEO-
QUE
RY

GENE

RIC

GE
O-
QU
ER
Y

GENE

RIC

PORTAB

ILITY

LOW

HIGH

LOW

LO
W

HIGH

• Reliability: - It measures the degree of correctness of

the results given by the system in stated conditions.
• Domain dependent: - It tells us if the system can work

only for a particular domain or it can be used for any
type of questions.

• Accuracy: - It gives the measure of accuracy of the
SQL query returned by the NLDBI.

• Domain: - It gives us for which domain the system can
be used.

• Portability: - It tells us if we can use the NLDBI for
different database management system or not.

A. Advantages of NLDBIs
 There are various advantages of using an NLDBI which
are as follows:-
• NO ARTIFICIAL LANGUAGE: - While using an

NLDBI there is no need to learn any artificial language
for gaining access to the database. For data retrieval or
data manipulation in a database, we need to learn a formal
query language like SQL which are difficult to learn and
master especially for a non-technical person.

• SIMPLE, EASY TO USE: - NLDBI makes the user
interaction with the database very easy. In a normal
database, we need to put a formal query sentence designed
in some formal query language while using an NLDBI we
need to provide only sentences written in our natural
language.

• BETTER FOR SOME QUESTIONS: - There is some
kind of questions which cannot be easily expressed in
DBQL such a questions involving negation or
quantification but they can be expressed easily in natural
language. So, for this kind of questions NLDBI serves
very helpful.

• FAULT TOLERANCE: - For writing a query in a DBQL
we need to follow certain rules and if any errors are made
then the system automatically rejects the input. While in
the case of NLDBI there is some tolerance of minor
grammatical errors. In the case of incomplete sentences,
NLDBI provides some support while computer system
does not.

• EASY TO USE FOR MULTIPLE DATABASE
TABLES: - Queries in which multiple databases are
involved are easily expressed in natural language interface
as compared to the normal graphical user interface.

B. Disadvantages of NLDBIs
 There are some disadvantages too of using an NLDBI
which are as follows:-
• FAILURES ARE NOT HANDLED PROPERLY: - No

explanation for system failures is provided. Most of the
time the user has to identify the cause of error itself.
Some users try to put the question in other ways and
some might just leave it unanswered.

• LINGUISTIC COVERAGE IS NOT OBVIOUS: - Most
of the NLDBIs available are domain specific i.e. they can
handle only some subsets of a natural language. In some
cases, the system cannot answer certain answers
belonging to their own subset. Some generic NLDBIs
have started to be developed but still, these interfaces
also depend upon the reach of grammar that is provided
to them which is not in the case of formal languages. The
coverage of formal language is obvious and statements
following given rules are guaranteed to give proper
results.

• FALSE EXPECTATIONS: - NLDBIs are assumed to be
intelligent systems as they are processing a natural
language. Thus sometimes users tempt to ask questions
involving certain judgment, complex ideas etc. for which
we cannot rely upon an NLDBI system.

Abhilasha Gautam et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,469-473

© 2015-19, IJARCS All Rights Reserved 473

VI. CONCLUSION

 This paper attempts to serve two purposes mainly which
are: Firstly, to introduce the reader with the basic concept of
NLDBIs and common techniques based on which NLDBIs are
developed. It presents the user with some of the research work
that has been done in the field of NLDBIs. Secondly, we
conclude some of the advantages and disadvantages of using a
NLDBI. Lots of research has been still on going in this field
since last few decades and thus surveying the field cannot be
achieved completely at any given moment. Over the period,
many natural language database systems have been developed,
all with different capabilities and specifications. On the top we
have LADDER which was developed in 1978 for information
about US Navy ships. LADDER was domain specific and had
high error rate. This urged for systems with higher reliability
and performance which led to the development of systems like
PRESICE and WASP. Though these systems boosted higher
performance but were still domain dependent. To deal with
this problem generic systems were developed like NALIX and
NLI-RDB.
 Though development in natural language database system
have advanced in last few years, it is still not being commonly
used. Algorithms are needed to developed and incorporated for
query optimization. We are going to pursue the research
further with the intent of incorporating the functions of natural
language database interface in PostgreSQL.

VII. REFERENCES

[1] N.Nihalani, S.Silakari, M.Motwani. Natural language Interface
for Database: A Brief review, IJCSI International Journal of
Computer Science Issues, Vol. 8, Issue 2, 2011.

[2] R.Reilly, N.Sharkey, Connectionist Approaches to Natural
Language Processing, Lawrence Erlbaum and Associates,
Hilldale, NJ, 1992.

[3] H.Bais, M.Machkour, L.Koutti, A Model of a Generic Natural
Language Interface for Querying Database, MECS, 2016.

[4] E.Sacerdoti, Language Access to Distributed Data with Error
Recovery, Knowledge Repr.- l : Sacerdoti 196.

[5] Y.Li, H.Yang, H.Jagadish, NaLIX: an Interactive Natural
Language Interface for Querying XML, SIGMOD, Baltimore,
Maryland, USA, 2005.

[6] A.Popescu, O.Etzioni, H.Kautz, High Precision Natural
Language Interfaces to Databases: a Graph Theoretic Approach,
American Association for Artificial Intelligence 2002.

[7] Y.Wong, R.Mooney, Learning for Semantic Parsing with
Statistical Machine Translation, Human Language Technology
Conference of the North American Chapter of the Association
for Computational Linguistics (HLT/NAACL-2006). pp. 439-
446, New York City, NY, June 2006

[8] A.Alghamdi, M.Owda, K.Crockett (2017) Natural Language
Interface to Relational Database (NLI-RDB) Through Object
Relational Mapping (ORM).

[9] A.Sawant, P.Lambate, A.Zore, Natural Language to Database
Interface, International Journal of Engineering Research &
Technology (IJERT) Feb 2014.

[10] F.Li, H.Jagadish, NaLIR: An Interactive Natural Language
Interface for Querying Relational Databases, SIGMOD’14,
Snowbird, UT, USA, 2014.

[11] G.Rao, C.Agarwal, S.Chaudhry, N.Kulkarni, et.al, NATURAL
LANGUAGE QUERY PROCESSING USING SEMANTIC
GRAMMAR, (IJCSE) International Journal on Computer
Science and Engineering.

[12] W.Beranek, N.Inc, Progress in natural language understanding:
an application to lunar geology, AFIPS '73 Proceedings of the
June 4-8, 1973, national computer conference and exposition
Pages 441-450

[13] E. Rich, "Natural-Language Interfaces," in Computer, vol. 17,
no. 9, pp. 39-47, Sept. 1984.doi:
10.1109/MC.1984.1659244IEEE.

	INTRODUCTION
	LITERATURE REVIEW
	LADDER
	NaLIX
	PRECISE
	WASP
	NLI-RDB

	ARCHITECTURE
	Selecting a Template (Heading 2)

	METHODOLOGY
	Pattern-Matching
	Syntax-Based Systems
	Semantic-Based Systems
	Intermediate Representation Languages

	COMPARATIVE ANALYSIS
	Advantages of NLDBIs
	Disadvantages of NLDBIs

	CONCLUSION
	REFERENCES

