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Abstract: Network operators often need to deal with events that compromise their networks. One approach to find these events is to monitor the 
aggregate traffic in one or several network links and then look for significant deviations from some statistical model of normal behavior. This 
problem, known as traffic anomaly diagnosis, involves two steps: anomaly detection and root cause analysis. Anomaly detection methods have 
to define first what constitutes normal traffic behavior. Given the large variability in Internet traffic behavior, current techniques learn their 
parametric models from traces that are assumed to contain no anomalies. Besides the computational overhead of periodically re-training the 
model, real traces are never guaranteed to be anomaly-free; anomalies in the training data can contaminate the detector’s definition of normal 
traffic behavior. Another problem with current anomaly detectors is that, by aggregating traffic before detection, they lose information about 
which specific flows cause the anomaly. Root cause analysis is the process of recovering this information, by going back to the original traffic 
traces looking for events that could explain the alarm. Currently, there are few automated techniques that can help with root cause analysis; 
operators often rely on ad-hoc manual procedures, which are both time-consuming and error-prone. In a large network with hundreds of links, 
the number of events that can trigger alarms may easily overload the Network Operations Center, making anomaly detection tools useless. In this 
thesis we design an anomaly diagnosis system (i.e., detection and root cause analysis) that exposes a broad range of anomalies and automatically 
explains their causes. We design an anomaly detection method that uses a non-parametric model of normal traffic behavior, and thus is simple to 
compute and immune to data contamination. It also makes it easier to identify the flows responsible for an anomaly. Second, we propose a 
technique that automates the root cause analysis step by identifying the anomalous traffic and classifying it according to the type of root cause 
vent. Our results can correctly diagnose anomalies caused by a variety of events and also expose a different class of traffic anomalies when 
compared to previously proposed detection methods.  
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I. INTRODUCTION 

Network operators typically monitor traffic in order to 
find and correct problems that could affect Service-Level 
Agreements (SLAs) with their customers, or compromise 
their traffic engineering, network dimensioning, and security 
policies. These problems include faulty or misconfigured 
routers, as well as unexpected traffic such as flash crowds 
and attacks. A number of techniques have been proposed to 
automate this analysis. In one class of approaches, known as 
anomaly diagnosis, the operator looks for unusual changes 
in traffic behavior and subsequently tracks down the causes 
of these changes. 

A. Anomaly Detection 
The first step of anomaly diagnosis is called anomaly 

detection and its goal is to monitor traffic and flag an alarm 
whenever some sort of abnormal change happens. Several 
techniques have been proposed to address the basic problem 
.In these techniques, link or network traffic is aggregated 
into one more time series, and e.g., packet counts in fixed-
sized time bins. Next, the time series is compared to a pre-
selected model of normal traffic behavior and an anomaly is 
flagged whenever the observed traffic deviates from the 
model. Given the large variability in Internet traffic behavior 
(e.g., different transport layers, applications, and end users) 
all practical models of normal traffic are statistical models 
[1].  

 

B. Root Cause Analysis 
After an anomaly detector flags an alarm, network 

operators need to investigate the traffic bin where the 
anomaly was flagged to extract as much information as 
possible about its cause, including:  
 The amount of traffic (i.e., packets, bytes) involved in the 
anomaly; 
Features of the anomalous traffic, e.g., IP address, 
TCP/UDP ports; 
 The type of root cause event (e.g., link failure, attack, 
flash crowd). 
Typically, this information is obtained manually by 
inspecting traffic traces, router logs, and other sources of 
data.  
This investigation is known as root cause analysis and it is 
important because its output determines all decisions on 
whether and how the root cause event must be dealt with [2] 
and [3].  

C. Short-Timescale Uncorrelated-Traffic Equilibrium 
A Short-Timescale Uncorrelated-Traffic Equilibrium is 

fundamentally different from previous anomaly detectors as 
its model of normal traffic behavior does not need to be 
trained from historical data. Rather, we use a relatively 
simple, but surprisingly effective, statistical test for inferring 
strong correlations among flows on a single link. This test is 
based on a mathematical model of a type of equilibrium 
which we study in detail. It finds anomalies caused by 
strongly correlated flow changes, i.e., events where several 
flows simultaneously increase or decrease their volume, 
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even when these flows do not share common 5-tuple 
features such as IP addresses, ports, and protocol number. It 
eliminates the need for training because it uses a static 
definition of normal behavior, based on a flow independence 
assumption which is reasonable in highly aggregated 
backbone links. The main drawback of our approach is that 
if, somehow in future, the nature of Internet traffic changes 
and all flows become strongly correlated, our method would 
not be able to adapt to such a change. Traditional anomaly 
detection methods based on parametric models would be 
able to adapt simply by learning the new definition of 
normal behavior. We show that many types of events (e.g., 
scanning and DDoS attacks, link outages, routing shifts) 
generate strongly correlated flows, and that our detector is 
capable of accurately finding these events. We also show 
that if an anomaly is aggregated into a few large flows, then 
it is not capable of detecting it. We use this observation to 
develop a heuristic that helps us identify the set of flows 
causing an anomaly. This heuristic works by aggregating 
flows according to features like IP addresses and ports, and 
checking if it still detects an anomaly after aggregation. 
When an aggregation level makes the anomaly disappear, 
we know the anomalous flows can be found by looking at 
only a few large flows, which is easily done through visual 
inspection. 

A Short-Timescale Uncorrelated-Traffic Equilibrium 
has the following main characteristics: 
(a) Low complexity - It can decide if a time bin is 

anomalous by looking only at that time bin and the 
previous one. 

(b) Only one threshold - Our detector has a single threshold 
parameter that directly controls its false positive rate 
(under certain statistical assumptions). 

(c) Anomalous flow identification - By isolating the 
anomalous flows, we can analyze their characteristics 
and understand the anomaly’s root cause event. 

II. BACKGROUND 

A. Network Event Detection 
Several methods have been developed to detect events 

that network operators care about a high-level taxonomy for 
the techniques. Event detection techniques can be broadly 
divided in two categories: anomaly based and signature-
based detectors. Anomaly-based techniques involve 
statistical models of normal behavior, while techniques 
based on signatures focus on matching known patterns of 
unwanted behavior. We separate the anomaly-based 
techniques between those that analyze traffic data (i.e., 
packet or flow traces, SNMP traces with packet counts) 
from those that look at control data (e.g., routing messages, 
DNS queries). We further divide the techniques based on 
traffic data between those that analyze all traffic data 
regardless of the application, from those that analyze traffic 
from specific applications (e.g., e-mail, IRC). 

Finally, we divide traffic based anomaly detectors 
among those that aggregate traffic into one or more time 
series (e.g., packet counts, entropy) and flag alarms per time 
bins, from methods which do not aggregate all the traffic, 
and instead flag alarms for individual hosts, flows or 
packets. Clearly, statistical techniques can be used to find 
unusual patterns in data from domains outside of 
networking, e.g., public health data and stock market fraud 

detection. A survey provides a comprehensive overview of 
anomaly detection methods in several areas. This thesis is 
concerned with problems related to anomaly detectors based 
on aggregate traffic data. Accordingly, our survey of event 
detection techniques goes deeper into this specific class of 
methods. Nevertheless, we also discuss the other techniques, 
identifying which parts of our problems are shared. We 
review techniques from each class of approaches discussed 
above, starting from those which are higher in the taxonomy 
of above figure and descending to the more specific ones [1] 
and [2].  

B. Anomaly Detection on Control Data 
Some methods look for anomalies in Domain Name 

System (DNS) queries and responses, including botnets, and 
fast flux. Previously observe query rates at a server, and 
look for time bins with an unusually high number of queries 
which could indicate bots connecting to a command-and-
control machine. In fast flux, a hacker registers several IPs 
under the same domain name, each with a very small time-
to-live. This type of technique is use to hide phishing web 
sites and command-and-control nodes in botnets. The 
perform queries for specific DNS names and records the 
number of IP addresses per name. A single domain with 
several different IPs can be an indication of fast flux. 
Several methods can detect routing-induced anomalies by 
analyzing BGP feeds. To use topology data as a baseline in 
order to identify abnormal BGP messages that could 
indicate a prefix hijacking attack. Use wavelet analysis to 
find spikes in the number of BGP advertisements. To 
combine BGP advertisements with traffic data in order to 
find routing events that have significant traffic impact. Most 
of these techniques have similar problems compared to 
traffic-based anomaly detection. First, when they find a time 
bin with an unusual amount of control data (whether it is 
DNS or BGP messages) they still need to identify which 
messages are abnormal (domain names in DNS, or prefixes 
in BGP). However, the amount of control data in a network 
is generally much smaller than the amount of traffic data, 
making manual root cause analysis less of a challenge than 
in the traffic anomaly case [4].  

C. Anomaly Detection on Application-Specific Data 
Some techniques analyze e-mail data to find spam and 

botnets. BotGraph is a botnet detection system which 
monitors web mail services (e.g., Hotmail and Gmail) and 
measures the correlation between logins from different 
users. They use random graph theory to build a model of 
normal behavior, and they look for sub graphs where an 
unusually high number of users share IP addresses. The E-
mail Mining Toolkit (EMT) is systems that monitor e-mail 
messages. However, unlike BotGraph, these systems build 
graph models of normal user communication patterns, and 
identify spammers as nodes with abnormal connectivity in 
the graph. Binkley and Singh propose an anomaly detection 
method that analyzes TCP header fields and Internet Relay 
Chat (IRC) messages to find IRC channels where bots 
communicate with their botmaster. They look for scanning 
activity using the TCP headers and then look for IRC 
channels with a suspiciously high number of scanners. As in 
signature-based methods, these techniques detect very 
specific types of events (given the specific types of data they 
monitor) and in fine granularities (i.e., hosts, email users). 
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These characteristics make root cause analysis trivial from 
the inspection of the output of these tools [5].  

D. Anomaly Detection on Non-Aggregate Traffic Data 
Some methods create statistical models for the behavior 

of individual hosts or even packets i.e., without aggregating 
all the traffic in a link. Threshold Random Walk (TRW) is a 
port scan detection mechanism that models the access 
pattern of benign and malicious source hosts as two 
independent random walks. Namely, as a source contacts 
different destinations, TRW computes the likelihood of its 
sequence of destinations under each random walk. TRW 
then uses a simple likelihood ratio test to decide if the 
source is a scanner. Time-based Access Pattern Sequential 
hypothesis test (TAPS) is another scan detector, which 
monitors the number of destination ports contacted per 
source host and also uses a sequential test to flag scanners. 
Some techniques detect TCP SYN flood attacks by 
monitoring the number of unfinished connections per 
destination host and applying the cumulative sum (CUSUM) 
sequential hypothesis test. BotSniffer groups sources by the 
destinations they access and analyzes the spatio-temporal 
correlation inside each group to find sets of malware 
infested hosts (i.e., bots) contacting the command-and 
control server of a botnet. Packet Header Anomaly 
Detection (PHAD) learns the typical ranges of packet header 
fields from the MAC, network, and transport layers, in order 
to flag packets with suspicious values in these fields. One 
advantage of these techniques is that once an alarm is raised, 
we automatically know which are the abnormal hosts and 
packets. On the other hand, each of these techniques is 
restricted to a specific type of event and maintaining per 
host state of the algorithms can be complex in highly 
aggregated links [3] and [5]. 

E. Anomaly Detection on Aggregate Traffic Data 
As discussed in the previous, one of the main 

drawbacks of looking for an anomaly in aggregated traffic is 
that we lose information about the cause of an anomaly. For 
example, not all of the traffic flows in a link are anomalous. 
Thus, once an alarm is flagged, we need to disaggregate 
normal from anomalous traffic. Moreover, we still need to 
classify anomalies according to the events that flag them. 
All of the detectors described below have to deal with these 
problems. We identify the contributions from previous work 
by dividing them in three sub problems within traffic 
anomaly detection: (1) the strategies to aggregate traffic data 
into time series; (2) the definition of traffic metrics that can 
expose anomalies; and (3) the statistical techniques used to 
flag outliers in these aggregated metrics.  

F. Aggregation Strategies 
There are two main issues related to the way traffic data 

is aggregated in time series: 
(a) The data reduction techniques used to reduce the 

overhead of traffic monitoring; and (2) the choice of 
converting the monitored traffic into one or multiple 
time series. Each of these issues can impact the 
performance of an anomaly detector. Data reduction 
techniques play an important role in anomaly detection 
for highly aggregated backbone links. In order to save 
on storage and processing overhead, flow 
measurements in core networks typically use packet 
sampling with rates between 0.1% and 1%.  

G. Traffic Anomaly Root Cause Analysis 
When an anomaly detector flags an alarm an operator 

must know what caused the alarm before reacting. We 
review three types of tools that can help with root cause 
analysis: (1) traffic analysis tools that help with 
visualization and finding large traffic clusters; (2) anomaly 
detectors that can also identify the traffic involved in an 
anomaly; (3) methods to classify anomalies by the type of 
root cause event. 

H. Traffic Analysis Tools 
Although root cause analysis approaches still require 

manual investigation and visualization tools, there are traffic 
analysis techniques that can help an operator to discover 
what is going on in the traffic when an anomaly happens. 
Several methods can identify high volume traffic clusters 
(i.e., heavy-hitters), Auto Focus being the most well-known 
example. The disadvantages of relying purely on tools like 
Auto Focus for root cause analysis are: (1) some anomalies 
(e.g., scans) involve low traffic volumes and (2) none of 
these tools is explicitly trying to correlate their output with 
the alarms triggered by anomaly detectors, and thus still 
require manual intervention from operators.  

I. Anomalous Flow Identification 
Most approaches to identify the flows responsible for an 

anomaly rely on sketch-based detectors. A k-array sketch is 
a k X h matrix associated with k independent hash functions 
that map a flow into one out of h buckets. In each time bin, a 
sketch based detector first hashes a flow using each of the k 
hash functions. Each flow is added k times to the matrix, in 
the cells corresponding to the buckets obtained from each 
hash function. By taking the matrices from different time 
bins, one ends up with kh time series, one for each cell 
location. Then, statistical techniques are applied to these 
time series to detect which cells contain anomalous 
behavior. During a time bin, if one or more cells flag an 
alarm, the anomalous flows are usually found by taking the 
intersection of the sets of flows hashed into these cells. The 
first to propose sketches to identify the flows involved in an 
anomaly. They used a naive detection rule, judging a sketch 
cell as anomalous if its relative change since the previous 
time bin exceeds a fixed percentual threshold. The subspace 
method to exploit the spatial correlation between different 
cells in a sketch. For using association rule mining to help 
identify dominant characteristics (e.g., IPs, ports) of 
anomalous flows after they have been identified by the 
sketch-based approach described above. While these works 
take concrete steps towards automated root cause analysis, 
their application is restricted to anomalies that can be found 
on sketches. Previous work has shown that the way we 
aggregate data play an important role in anomaly detection, 
and it is not clear at this point if sketch-based aggregation is 
capable of finding all types of anomalies. Unsupervised 
Root Cause Analysis on the other hand, does not rely on the 
way that traffic is aggregated. 

J. Root Cause Classification 
Since different types of events may require different 

types of mitigation strategies, it is important to classify 
anomalies after they are detected. Although it is hard to 
characterize in advance the types of anomalies that occur in 
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a link or network (since new types of anomalies may appear 
over time), some typical classes include:  
(a) DoS attack - an attempt to overload a host or a link by 

flooding it with a very large amount of traffic 
originating from one or several hosts. 

(b) Port scan - packets sent to several ports in a target host 
to probe for services listening on these ports. 

(c) Network scan - packets sent to several hosts within a 
network to find available services or vulnerabilities on 
these hosts. 

(d) Flash crowd - the situation when a host or a network 
suddenly receives a large amount of traffic. 

(e) Alpha flow - a data transfer that is substantially larger 
than typical data transfers; also known as a heavy hitter 
flow. 

(f) Link outage - a failure, either in physical or software 
components, which cause a link to stop forwarding 
traffic. 

(g) Routing change - a change in routing tables that causes 
traffic to shift to or away from an observed link [1] and 
[4]. 

III. PROPOSED TECHNIQUE 

We propose a traffic anomaly detection technique 
which addresses limitations from previous detectors. 
Namely, previous detectors involve complex training phases 
and expose mostly events with large traffic volumes. In 
addition, most anomaly detection techniques in the literature 
do not provide enough information about the types of 
anomalies they detect.  

A traffic flow is a set of packets that share the same 
values for a given set of traffic features (e.g., source and 
destination IP addresses, source and destination ports, and 
protocol number). To study the evolution of a flow, time is 
usually divided into fixed sized intervals called bins. The 
volume of a flow f during bin i, denoted by xf,i’

A. (A1)Flow independence – There are two well-known 
ways through which flow independence can be violated. 
First, some flows can be grouped into sessions; e.g., 
after a client downloads a web page from a server, it 
may open connections to other servers to download 
objects contained in the page. Second, flows can be 
correlated during congestion episodes, since they share 
the same queues in routers. This can happen if a link is 
saturated, since some flows need to reduce their 
throughput so that other flows can increase theirs. 
Previous works have shown that, despite these two 
common reasons for correlation, the dependencies 
across flows observed in traces from real links are 
normally very weak. One of the reasons for this is that 
most backbone links are underutilized, as they are over-
provisioned by design. 

 is the 
number of packets or bytes in the flow during the 
corresponding bin. In the model, flows crossing a link of 
interest are generated by a discrete time marked point 
process, where the mark process determines both the flow’s 
duration and its volume per time bin.  

While our model allows any distribution in the arrival 
and mark processes (e.g., arrivals can be Poisson or not, 
flow sizes can be heavy tailed or not), we make the 
following two assumptions: 

B. (A2) Stationarity - The distributions of the flow arrival 
process and the mark process do not change over time. 
Stationarity is heavily dependent on the timescale in 
which we observe flows, i.e., the size of time bins. It is 
well known that traffic exhibits strong non-stationary 
behaviors over long timescales, including daily and 
weekly cycles, and long-term trends. However, several 
works have shown that, at short timescales (i.e., less 
than an hour), traffic can be well modeled by stationary 
processes. If a traffic anomaly detection technique is a 
valid model for normal traffic, then we can design an 
anomaly detector whose null hypothesis is the set of 
consequences. 
Namely, we test with high confidence whether the 

volume changes of flows are i.i.d. samples of a zero-mean 
distribution. For this, we simply compute the confidence 
interval for the average volume changes across flows, and 
check if that confidence interval includes zero. If this 
condition does not hold for a given time bin, we mark that 
time bin as anomalous (we consider only traffic on non-
saturated links, and using short-timescale bins).  

We introduce Unsupervised Root Cause Analysis, a tool 
that automates traffic anomaly root cause analysis. 
Unsupervised Root Cause Analysis consists of two steps: 
(a) Identifying the flows responsible for an anomaly,  
(b) Classifying the anomaly according to the type of root 
cause event. 

The inputs that the inputs that Unsupervised Root Cause 
Analysis requires from a traffic anomaly detection technique 
and the specific datasets used in our evaluation requires 
from  traffic anomaly detection technique and the specific 
datasets used in our evaluation.  

First we specify the interface between Unsupervised 
Root Cause Analysis and the anomaly detector, while also 
defining notation that we use in this chapter. We then 
describe flow features that are used by our algorithms, and 
how we extract these features from traffic traces. Finally, we 
describe the anomaly datasets used in our experimental 
evaluation; we re-use one of the traces from the previous 
chapter and we introduce five new ones. 

Unsupervised Root Cause Analysis uses flow features 
to identify and classify the anomalous traffic. Specifically, 
we consider the following features: (1) source and 
destination IP addresses; (2) source and destination ports; 
(3) input and output router interfaces; (4) previous-hop and 
next-hop AS numbers; and (5) source and destination AS 
numbers. Note that, while features (1) and (2) describe a 
flow’s end hosts, features (3), (4), and (5) describe the 
network path taken by the flow. 

After identifying the anomalous flows, we have to infer 
the event that caused it. Our approach is to look for patterns 
in the set of anomalous flows. We first propose a graph-
based representation of flows, which allow us to inspect and 
label new types of anomalies when they are first found. 
Then we show how we can compute certain metrics from 
the set of anomalous flows and use these metrics in a 
hierarchical clustering algorithm to automatically recognize 
similar anomalies. 

IV. RESULTS 

We compare our identification algorithm’s output to the 
flows in our ground truth. For each anomaly, we measure 
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(1) the fraction of ground truth flows (or packets) that are 
missed by Unsupervised Root Cause Analysis, and (2) the 
fraction of traffic found by Unsupervised Root Cause 
Analysis which is not in the ground truth. We call these 
metrics missed traffic and extra traffic respectively. Figure 
shows CDFs of missed and extra traffic (in flows and 
packets) across all anomalies in trace A. Unsupervised Root 
Cause Analysis does not miss any flow or packet for nearly 
36% of the anomalies. In addition, it misses less than 11% 
of the flows in the ground truth for 97% of the anomalies. 
Note also that Unsupervised Root Cause Analysis does not 
introduce extra flows to the anomalies. Among the 
anomalies where at least one flow is missing, 94% are 
caused by short measurement gaps. 

We evaluate our classification algorithm as follows. 
Given an anomaly flagged at time t, we consider that all 
previous anomalies have been correctly classified with their 
ground truth labels. And compute the coordinates of each 
anomaly using the flows found in the identification step. 
After query the classification algorithm and compare its 
output to the corresponding ground truth label. 

 
Figure.1 Identification performance for a traffic anomaly detection 

technique anomaly in trace. 

V. CONCLUSION AND FUTURE WORK 

First, we propose an anomaly detector called traffic 
anomaly detection technique, which provides information 
that facilitates root cause analysis. After characterizing the 
limits of what is detectable by traffic anomaly detection 
technique, we design a heuristic to isolate the set of strongly 
correlated flow from the remaining normal traffic. This 
heuristic relies on tracking traffic anomaly detection 

technique at different flow aggregation levels, and looking 
for aggregation levels where it is not violated, in order to 
identify dominant features of the anomalous flows, such as 
IP addresses and ports. While traffic anomaly detection 
technique facilitates root cause analysis, it is not a complete 
solution to the problem; the flow identification heuristic is 
semi-automated, and traffic anomaly detection technique 
itself does not solve the root cause classification problem. 
We then propose an automated root cause analysis 
technique, Unsupervised Root Cause Analysis, which can 
explain anomalies using feedback from traffic anomaly 
detection technique. Unsupervised Root Cause Analysis 
operates in two steps: (1) isolating the anomalous traffic by 
iteratively discarding flows that seem normal; and (2) 
classifying the anomaly based on its similarity to previously 
classified events.  

The four directions for future research which derive 
from or extend the results in this thesis: (1) since traffic 
anomaly detection technique relies on a static model of 
normal traffic behavior and the possibilities for this model 
becoming invalid in the future; (2) Outline the steps needed 
to adapt more anomaly detectors to  Unsupervised Root 
Cause Analysis; (3) Talk about the possibility of using other 
types of data (besides traffic) in  Unsupervised Root Cause 
Analysis; (4) How an anomaly diagnosis systems may learn 
what types of anomalies an operator cares about. 
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