
Volume 8, No. 5, May-June 2017 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved                    372 

ISSN No. 0976-5697 

Information Security using Adaptive Multidimensional Playfair Cipher 
 

Krishnaraj Bhat, Dindayal Mahto and Dilip Kumar Yadav 

Department of Computer Applications  
National Institute of Technology Jamshedpur, India 

 
 

Abstract: Confidential information in today’s world exists in many forms such as text, image, audio, video, encoded, compressed etc. The 
important aim of this research is to develop such a cryptographic cipher which is very strong and can secure all types of information without any 
ambiguity. It is discovered from survey that the existing variations of Playfair cipher except one can support securing limited number of 
characters and most of them are ambiguous, have less confusion rate and avalanche effect which should be high in order to be strong. 
Exceptional variation is the one that supported securing all types of information without ambiguity. Unfortunately, this variation is not memory 
and bandwidth efficient like many other variants and it can have low or moderate avalanche effect with respect to one bit change in plain 
message. So, we propose a new variant called Adaptive Multidimensional Playfair Cipher (AMPC) which can secure all types of information 
unambiguously with high confusion rate and avalanche effect, and is memory and bandwidth efficient. The security analysis of the proposed 
cipher shows that it is strong against five major types of cryptanalytic attacks. The comparison analysis shows that the proposed cipher is better 
than the existing variations in terms of memory utilization, security and applicability. 
 
Keywords: Cryptography; Symmetric cipher; Block cipher; Classical cipher. 
 
I. INTRODUCTION 

 
Nowadays, using internet all the types of 

information between users or systems is transmitted. Since 
internet is not a safe medium, confidential information 
transferred in intelligible form may lose its confidentiality. 
Therefore, they have to be made unintelligible in order to be 
secure. One of the ways to make information unintelligible 
is by encryption using a cipher. The main objective of this 
research is to develop a cipher that can be used to make any 
type of information unintelligible. The proposed cipher is a 
novel extension of Classical Playfair cipher (or Wheatstone 
Playfair cipher). Classical Playfair cipher is one of the 
symmetric, multi letter encryption ciphers invented by a 
British scientist named Sir Charles Wheatstone in 1854. But, 
it has the name of his friend Baron Playfair of St. Andrews 
who defended it at the British foreign office. It has also 
played a critical role in World War I and World War II [1]. 
But, it supports securing only 26 uppercase English letters 
where I and J are treated same, works with digram (group of 
2 letters) and uses X as filler letter [2]. Since a digram and 
its reverse is transformed in the same fashion, cryptanalysis 
became easier [3], [4]. Other demerits are: it has got less 
confusion rate (complexity in relationship between statistics 
of cipher message and encryption key), less avalanche effect 
(changes in bits of cipher message produced by a change in 
one bit of the plain message or one bit of the key) [1] and it 
is ambiguous (inability of the cipher to determine whether a 
filler letter in decrypted message is a part of original 
message or not). There came many improvements over the 
Playfair cipher later on which are discussed in chronological 
order in literature survey in Section II. It was found from 
survey that none of the existing variations of Playfair cipher 
could secure all types of information unambiguously with 
high confusion rate and with high avalanche effect. The 
variation which could secure all types of information was 
not memory and bandwidth efficient, and could have low or 
moderate avalanche effect with respect to one bit change in 
plain message. Therefore, we have proposed a variation of 

Playfair cipher whose working is discussed in Section III 
and IV which can secure all types of information with no 
ambiguity, memory efficiency and high confusion rate and 
avalanche effect. Section V depicts the security analysis of 
the proposed cipher in which it is found that the proposed 
cipher is strong against all five main kinds of cryptanalytic 
attacks. Section VI describes the comparison analysis of the 
proposed cipher with the existing variants which shows that 
the proposed cipher is memory and bandwidth efficient, 
more applicable and provides better security when compared 
to all existing variations. 
 

II. LITERATURE SURVEY 
Murali and Senthilkumar [5] proposed a Playfair 

cipher variation that maps random numbers generated using 
Linear Feedback Shift Register (LFSR) to secret key and 
transmits numbers instead of cipher text. This enhanced the 
confusion rate by one more level. But still cipher remains 
ambiguous, supports only 26 characters and has low 
avalanche effect with respect to one bit change in plain text. 
Sastry et al [6] developed a variation which supports 128 
ASCII characters from code 0 to 127. It uses a key of 64 
unique characters, uses no filler character and supports 
encryption of plaintext of even length by performing 
interweaving and substitution on plain text 16 times 
producing high confusion rate and avalanche effect. It is 
unambiguous. But, it won’t support encryption of plaintext 
of odd length. Srivastava and Gupta [7] proposed a variant 
that supports 64 characters where ^ is used as filler character 
and | is used to represent a space character. LFSR is used to 
permute the bits in the bit representation of characters which 
increased confusion rate, and avalanche effect is moderate 
or high when a bit is altered except at the end of plaintext 
where it is low. But, this variation is still ambiguous. Basu 
and Ray [8] proposed a variation which supports 90 
characters and ^ is used as filler character. The only merit of 
this version is that it supports more characters than the 
Classical one. All other demerits of Classical Playfair cipher 
are still present in this cipher. Dhenakaran and Ilayaraja [9] 
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proposed a variant supporting all 256 ASCII characters with 
no filler character for replacing repeating character in a pair 
and null character is appended to make plain text length 
even. It is unambiguous except at the end of decrypted plain 
text which can be easily resolved. But, this variant has low 
confusion rate and avalanche effect. Kaur et al [10] 
proposed a variant that supports 36 characters and maps 
random numbers generated using LFSR to secret key and 
transmits numbers instead of cipher text. This just enhanced 
the confusion rate by one more level. But, cipher is 
ambiguous and has low avalanche effect with respect to one 
bit change in plain text. Again, Kaur et al [11] proposed a 
new variation called 3D Playfair cipher which supports 64 
characters, uses X and Z characters as fillers and works with 
trigrams (groups of 3 characters) which increased the 
confusion rate. But, it is still ambiguous and has low 
avalanche effect but high when compared to those which 
work with just digrams. Alam et al [12] used * and # 
characters as fillers instead of X for the messages encrypted 
using Classical Playfair cipher making it just unambiguous. 
Again, Kaur et al [13] proposed an extension of 3D Playfair 
cipher which maps random numbers generated using LFSR 
to secret key and transmits numbers instead of cipher 
text. This increased the confusion rate but still cipher is 
ambiguous and has low avalanche effect with respect to one 
bit change in plain text. Singh et al [14] proposed a variation 
of 3D Playfair cipher in which bits in bit representation of 
cipher text characters are rotated in circular fashion before 
transmission based on random numbers generated using 
LFSR enhancing the confusion rate. Still, cipher has 
ambiguity and has low avalanche effect with respect to one 
bit change in plain text. Verma et al [15] proposed an 
extension of 3D Playfair cipher where cipher text characters 
are XORed/XNORed with random numbers generated using 
LFSR to enhance the confusion rate. But, cipher is still 
ambiguous and has low avalanche effect with respect to one 
bit change in plain text. Chand and Bhattacharyya [16] 
purported a new variation to Classical Playfair cipher which 
supports 36 characters and plain text is encrypted four times 
using four different keys before getting converted to cipher 
text which raised the confusion rate. Still, this variant is 
ambiguous and has low avalanche effect. Hans et al [17] 
proposed a variation of Classical Playfair cipher in which I 
and J are not treated as same, key matrix is rotated after 
processing each digram and rows and columns are swapped 
based on randomly generated swap patterns increasing the 
confusion rate. 

III. ADAPTIVE MULTIDIMENSIONAL 
PLAYFAIR CIPHER (AMPC) 

But, this variant is ambiguous and has low 
avalanche effect with respect to one bit change in plain text. 
Singh et al [18] proposed an extension of 3D Playfair cipher 
in which key matrix is rotated after processing each trigram 
to enhance the confusion rate. But, this variation is also 
ambiguous and has low avalanche effect with respect to one 
bit change in plain text. All the variants discussed so far can 
secure only limited number of characters. Also, most of 
them are ambiguous and lack high confusion rate and 
avalanche effect. The variants that are ambiguous cannot be 
used to secure passwords. Since the information can be in 
any form: text, image, audio, video, compressed, encoded 
etc., in our previous work [19], [20] we developed a variant 
that can be used to secure any kind of information 
unambiguously with high confusion rate and with low or 
moderate or high avalanche effect. Again, we gave a 

generalization for multidimensional Playfair cipher [21]. A 
common demerit of all the variants surveyed so far is that 
most of the time cipher message size is greater than plain 
message size making the ciphers memory and bandwidth 
inefficient. 

From above survey details it can be inferred that 
there is no variation of Playfair cipher which is always 
memory efficient and always has high avalanche effect in 
addition to having the capacity for securing all types of 
information unambiguously with high confusion rate. 
Therefore, we propose a novel variant called Adaptive 
Multidimensional Playfair Cipher (AMPC) which fulfills all 
the requirements just stated above. AMPC supports the 
security of 256 values (0 to 255) that can be stored in a byte 
(8 bit) memory. Since the least amount of memory used to 
store information in a computer is a byte, AMPC can 
support the security of all types of information.   
 

AMPC is a symmetric cryptographic cipher which 
can encrypt/decrypt a maximum of 2048 values and a 
minimum of 1 value at once. AMPC uses a key matrix of 
size 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 which has eight 
dimensions holding 256 values from 0 to 255 representing 
the values that can be stored in a byte memory. The 
specialty of AMPC is that it doesn’t use filler values. Hence, 
no pre-processing and post-processing of a message are 
required. The main processes in AMPC are: key matrix 
formation, message encryption and message decryption. 
Each process is described in detail in the following 
subsections. 
 
A. Key Matrix Formation 

This process is common in both encryption and 
decryption processes and has four steps as follows: 

i. Take a sequence of values in the range 0 to 255. 
For example, (100 200 12 15 120 87). 

ii. Take out the repeated values if present. For 
example, after taking out repeated values from (25 
26 25 56 123 67) the sequence will become (25 26 
56 123 67). 

iii. Now, the sequence without any duplicates will be 
used as the key to construct the key matrix. Place 
the values of the key in 2 × 2 × 2 × 2 × 2 × 2 × 2 × 
2 key matrix starting from low co-ordinate (0, 0, 0, 
0, 0, 0, 0, 0) cell to high co-ordinate (1, 1, 1, 1, 1, 1, 
1, 1) cell. 

iv. Fill the left off cells in the key matrix with those 
values that are not in the key starting from value 0 
to 255 following the rule in step iii.  

For the key (80 108 97 121 102 105 114 32 99 112 104 
101), the key matrix is shown in Table I. It can be seen in 
Table I that cells are numbered in hexadecimal format i.e. 0 
to F in the top most row and in left most column. They when 
combined represent the co-ordinate of a cell in the key 
matrix. For example, the hexadecimal values 0 and F where 
0 is the row number and F is the column number represent 
the co-ordinate (0, 0, 0, 0, 1, 1, 1, 1) which is their binary 
equivalent. The corresponding cell contains the value 3 in 
Table I. 
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Table I. AMPC key matrix for the key (80 108 97 121 102 105 114 32 99 112 104 101) 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 80 108 97 121 102 105 114 32 99 112 104 101 0 1 2 3 
1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
2 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 
3 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 
4 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 
5 69 70 71 72 73 74 75 76 77 78 79 81 82 83 84 85 
6 86 87 88 89 90 91 92 93 94 95 96 98 100 103 106 107 
7 109 110 111 113 115 116 117 118 119 120 122 123 124 125 126 127 
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

 
B. Message Encryption 

This process has mainly five steps: key matrix 
formation, block matrix formation and for each block matrix 
formed XOR the values, rotate the each column values and 
encrypt values using multidimensional Playfair cipher. The 
last three steps are repeated ten times. The key matrix 
formation is already discussed above. The remaining steps 
are discussed in following sub subsections.  
 
Encryption 
{ 
    Key matrix formation from the key 
    Block matrix formation from the plain message 
    For each block matrix formed, do 10 times 
        XORing of values with random numbers generated 
using LFSR 
        Columnar rotation of values 
        Encrypt using multidimensional Playfair cipher    
} 
 
1. Block Matrix Formation: Here, the plain message is 

divided into block matrices. A block matrix formed 
may have a maximum of 2048 values in it with 256 
rows and 8 columns. The specialty of block matrix 
formation is that the last row may contain 1 or 2 or 3 or 
4 or 5 or 6 or 7 or 8 values (columns) depending on the 
message length. 
For example, a message having 3994 values will be 
divided into two block matrices. The first will contain 
2048 values with 256 rows with 8 values in each row 
and the second will contain 244 rows where first 243 
rows will contain 8 values and the last row will contain 
only 2 values. 

 
2. XORing of Values: While encrypting a block matrix, the 

very first step is XORing the values in it with the 
corresponding random numbers generated using LFSR 
in circular fashion i.e. once all the random numbers 
generated are used for XORing, the next value will be 
XORed with the first random number generated and so 
on. The process of generating random numbers from 
LFSR is same as discussed in our previous work [19]. 
The random numbers sequence of length 254 generated 

using the key (80 108 97 121 102 105 114 32 99 112 
104 101) is: 25, 51, 102, 205, 155, 55, 111, 222, 189, 
122, 244, 232, 209, 162, 68, 137, 19, 39, 78, 157, 59, 
119, 238, 221, 186, 116, 233, 211, 167, 79, 159, 62, 
124, 248, 240, 225, 194, 132, 9, 18, 37, 75, 150, 45, 90, 
181, 107, 215, 174, 92, 185, 115, 231, 206, 156, 57, 
114, 229, 203, 151, 47, 95, 190, 125, 250, 245, 234, 
212, 169, 82, 164, 72, 145, 35, 71, 142, 29, 58, 117, 
235, 214, 172, 89, 178, 101, 202, 149, 42, 84, 168, 80, 
161, 67, 135, 14, 28, 56, 112, 224, 192, 129, 2, 4, 8, 16, 
32, 64, 128, 0, 1, 3, 6, 13, 27, 54, 109, 219, 182, 108, 
217, 179, 103, 207, 158, 60, 121, 243, 230, 204, 153, 
50, 100, 200, 144, 33, 66, 133, 11, 23, 46, 93, 187, 118, 
236, 216, 177, 98, 196, 136, 17, 34, 69, 139, 22, 44, 88, 
176, 96, 193, 131, 7, 15, 30, 61, 123, 246, 237, 218, 
180, 105, 210, 165, 74, 148, 40, 81, 163, 70, 140, 24, 
49, 99, 198, 141, 26, 52, 104, 208, 160, 65, 130, 5, 10, 
21, 43, 86, 173, 91, 183, 110, 220, 184, 113, 226, 197, 
138, 20, 41, 83, 166, 77, 154, 53, 106, 213, 171, 87, 
175, 94, 188, 120, 241, 227, 199, 143, 31, 63, 126, 253, 
251, 247, 239, 223, 191, 127, 255, 254, 252, 249, 242, 
228, 201, 146, 36, 73, 147, 38, 76, 152, 48, 97, 195, 
134, 12.  

For example, a block matrix having 14 values 110, 
105, 116, 32, 106, 97, 109, 115, 104, 101, 100 112, 117 
and 114 is shown below. 









114117112100101104
1151099710632116105110

 

After XORing each value with the corresponding 
random number in the sequence, the new block matrix 
content is shown below. Here, value 119 is obtained by 
XORing 110 with 25, 90 is obtained by XORing 105 
with 51 and so on. 









20816415214431213
1732862412371890119

 

 
3. Columnar Rotation of Values: After XORing the 

values, values in each column of a block matrix are 
rotated based on the value obtained after XORing all 
the values in that column. The formulas for rotation are 
shown below. 
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New_row = (Old_row + (Xor_value % Row_count )) % 

Row_count (1) 
New_row = (Old_row + Row_count - (Xor_value % 

Row_count )) % Row_count (2) 
 

In the formulas, New_row and Old_row are the 
new and old row indexes of a value in a column 
respectively. Xor_value is the value obtained after 
XORing all the values in that column and Row_count is 
the number of rows which have that particular column. 
Formulas (1) and (2) are used for rotation of values in 
odd and even numbered columns respectively. When 
Row_count is one there will be no rotation. 

For example, a block matrix having 14 values after 
XORing operation is shown below. 









20816415214431213
1732862412371890119

 

After columnar rotation of values, the new block 
matrix content is shown below. 









20824123714490213
1732861641521831119

 

 
4. Multidimensional Playfair Cipher Encryption: In the 

key matrix, we know that each value is represented 
using eight co-ordinates; say (C1, C2, C3, C4, C5, C6, 
C7, C8). For example, in Table I, for value 3, C1 = 0, 
C2 = 0, C3 = 0, C4 = 0, C5 = 1, C6 = 1, C7 = 1 and C8 = 
1. While encrypting, all the values in a row of a block 
matrix are grouped and encrypted at once. Since in a 
block matrix, maximum number of columns is eight and 
minimum is one, number of values in a group varies 
from one to eight. When the group size is eight with 
values V0, V1, V2, V3, V4, V5, V6 and V7 read from 
left to right, each value Vj where 0 <= j <= 7 is 
substituted by the value in the co-ordinate cell 
(V(j+2)%8.C1, V(j+3)%8.C2, V(j+4)%8.C3, V(j+5)%8.C4, 
V(j+6)%8.C5, V(j+7)%8.C6, Vj.C7, V(j+1)%8.C8). Here, each 
co-ordinate value is represented in the form Vi.Ck 
which represents the value of co-ordinate Ck for value 
Vi. When the group size is seven, the key matrix is 
interpreted as having seven dimensions. For values Vj 
where 0 <= j <= 6, each value is substituted by the 
value in the co-ordinate cell (2 × V(j+2)%7.C1 + 
V(j+2)%7.C2, V(j+3)%7.C3, V(j+4)%7.C4, V(j+5)%7.C5, 
V(j+6)%7.C6, Vj.C7, V(j+1)%7.C8). For group size six, key 
matrix is interpreted as having six dimensions and each 
value Vj where 0 <= j <= 5 is substituted by the value 
in the co-ordinate cell (4 × V(j+2)%6.C1 + 2 × V(j+2)%6.C2 
+ V(j+2)%6.C3, V(j+3)%6.C4, V(j+4)%6.C5, V(j+5)%6.C6, 
Vj.C7, V(j+1)%6.C8). For group size five, key matrix is 
interpreted as having five dimensions and each value Vj 
where 0 <= j <= 4 is substituted by the value in the co-
ordinate cell (8 × V(j+2)%5.C1 + 4 × V(j+2)%5.C2 + 2 × 
V(j+2)%5.C3 + V(j+2)%5.C4, V(j+3)%5.C5, V(j+4)%5.C6, 
Vj.C7, V(j+1)%5.C8). For group size four, key matrix is 
interpreted as having four dimensions and each value 
Vj where 0 <= j <= 3 is substituted by the value in the 
co-ordinate cell (16 × V(j+2)%4.C1 + 8 × V(j+2)%4.C2 + 4 
× V(j+2)%4.C3 + 2 × V(j+2)%4.C4 +  V(j+2)%4.C5, 
V(j+3)%4.C6, Vj.C7, V(j+1)%4.C8

key matrix is interpreted as having three dimensions 
and each value V

). For group size three, 

j where 0 <= j <= 2 is substituted by 
the value in the co-ordinate cell (32 × V(j+2)%3.C1 + 16 × 
V(j+2)%3.C2 + 8 × V(j+2)%3.C3 + 4 × V(j+2)%3.C4 + 2 × 
V(j+2)%3.C5 + V(j+2)%3.C6, Vj.C7, V(j+1)%3.C8). For group 
size two, key matrix is interpreted as having two 
dimensions and each value Vj where j is 0 and 1 is 
substituted by the value in the co-ordinate cell (64 × 
Vj.C1 + 32 × Vj.C2 + 16 × Vj.C3 + 8 × Vj.C4 + 4 × 
Vj.C5 + 2 × Vj.C6 + Vj.C7, V(j+1)%2.C8). For group size 
one, key matrix is interpreted as having one dimension 
and the value V0 is substituted by the value in the co-
ordinate cell (((128 × V0.C1 + 64 × V0.C2 + 32 × 
V0.C3 + 16 × V0.C4 + 8 × V0.C5 + 4 × V0.C6 + 2 × 
V0.C7 + V0.C8

For example, a block matrix after columnar 
shuffling of values is shown below. 

) + Rand_num) % Rand_count). Here, 
Rand_num corresponds to a random number generated 
by LFSR and Rand_count corresponds to number of 
random numbers generated. 









20824123714490213
1732861641521831119

 
Using the key matrix shown in Table I, first row 

values are encrypted using eight dimensional Playfair 
cipher and second row values are encrypted using six 
dimensional Playfair cipher. The new block matrix 
content is shown below. 









120196209245244128
1027252284920217034

 
 

C. Message Decryption 
Like encryption process, decryption process also has 

five steps: key matrix formation, block matrix formation, for 
each block matrix formed decrypt using multidimensional 
Playfair cipher, inverse rotation of columnar values and 
inverse XORing of values. The last three steps are repeated 
ten times. Key matrix formation is already discussed. 
Remaining steps are discussed in detail in the subsequent 
sub subsections. 
 
Decryption 
{ 
    Key matrix formation from the key 
    Block matrix formation from the cipher message 
    For each block matrix formed, do 10 times 
        Decrypt using multidimensional Playfair cipher 
        Inverse Columnar rotation of values 
        Inverse XORing of values with random numbers 
generated using LFSR    
} 
 
1. Block Matrix Formation: It is same as in encryption 

process. The only difference is that the block matrix is 
formed by dividing the cipher message. 

 
2. Multidimensional Playfair Cipher Decryption: The 

naming conventions used here are same as in section 
III.B.4. For group size eight, each value Vj where 0 <= j 
<= 7 is substituted by the value in the co-ordinate cell 
(V(j+6)%8.C1, V(j+5)%8.C2, V(j+4)%8.C3, V(j+3)%8.C4, 
V(j+2)%8.C5, V(j+1)%8.C6, Vj.C7, V(j+7)%8.C8). For group 
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size seven, each value Vj where 0 <= j <= 6 is 
substituted by the value in the co-ordinate cell (2 × 
V(j+5)%7.C1 +  V(j+5)%7.C2, V(j+4)%7.C3, V(j+3)%7.C4, 
V(j+2)%7.C5, V(j+1)%7.C6, Vj.C7, V(j+6)%7.C8). For group 
size six, each value Vj where 0 <= j <= 5 is substituted 
by the value in the co-ordinate cell (4 × V(j+4)%6.C1 + 2 
× V(j+4)%6.C2 + V(j+4)%6.C3, V(j+3)%6.C4, V(j+2)%6.C5, 
V(j+1)%6.C6, Vj.C7, V(j+5)%6.C8). For group size five, 
each value Vj where 0 <= j <= 4 is substituted by the 
value in the co-ordinate cell (8 × V(j+3)%5.C1 + 4 × 
V(j+3)%5.C2 + 2 × V(j+3)%5.C3 + V(j+3)%5.C4, V(j+2)%5.C5, 
V(j+1)%5.C6, Vj.C7, V(j+4)%5.C8). For group size four, 
each value Vj where 0 <= j <= 3 is substituted by the 
value in the co-ordinate cell (16 × V(j+2)%4.C1 + 8 × 
V(j+2)%4.C2 + 4 × V(j+2)%4.C3 + 2 × V(j+2)%4.C4 + 
V(j+2)%4.C5, V(j+1)%4.C6, Vj.C7, V(j+3)%4.C8). For group 
size three, each value Vj where 0 <= j <= 2 is 
substituted by the value in the co-ordinate cell (32 × 
V(j+1)%3.C1 + 16 × V(j+1)%3.C2 + 8 × V(j+1)%3.C3 + 4 × 
V(j+1)%3.C4 + 2 × V(j+1)%3.C5 + V(j+1)%3.C6, Vj.C7, 
V(j+2)%3.C8). For group size two, each value Vj where j 
is 0 and 1 is substituted by the value in the co-ordinate 
cell (64 × Vj.C1 + 32 × Vj.C2 + 16 × Vj.C3 + 8 × Vj.C4 
+ 4 × Vj.C5 + 2 × Vj.C6 + Vj.C7, V(j+1)%2.C8). For 
group size one, the value V0 is substituted by the value 
in the co-ordinate cell (((128 × V0.C1 + 64 × V0.C2 + 
32 × V0.C3 + 16 × V0.C4 + 8 × V0.C5 + 4 × V0.C6 + 2 
× V0.C7 + V0.C8

For example, a block matrix containing a cipher 
message with 14 values is shown below.  

) + Rand_count - Rand_num) % 
Rand_count). 









120196209245244128
1027252284920217034

 
Using the key matrix shown in Table I, first row 

values are decrypted using eight dimensional Playfair 
cipher and second row values are decrypted using six 
dimensional Playfair cipher. The new block matrix 
content is shown below. 









20824123714490213
1732861641521831119

 
 

3. Inverse Columnar Rotation of Values: It is the reverse 
process of columnar rotation of values. The formulas 
for inverse rotation are shown below. The naming 
conventions used are same as in section III.B.3. 
 

New_row = (Old_row + Row_count - (Xor_value % 
Row_count )) % Row_count (3) 

New_row = (Old_row + (Xor_value % Row_count )) % 
Row_count (4) 

 
Formulas (3) and (4) are used for inverse columnar 

rotation of values in odd and even numbered columns 
respectively. When Row_count is one there will be no 
rotation. 

For example, a block matrix formed after 
multidimensional Playfair cipher decryption is shown 
below. 









20824123714490213
1732861641521831119

 

After performing inverse columnar rotation, the 
block matrix content is shown below.  









20816415214431213
1732862412371890119

 

 
4. Inverse XORing of Values: It is the reverse process of 

XORing of values during encryption. The same random 
number that was used to form the cipher value from a 
plain value in a round is used to get back the 
corresponding plain value from the cipher value for that 
round. 

For example, block matrix content after inverse 
columnar rotation of values is shown below. 









20816415214431213
1732862412371890119

 

Block matrix content after performing inverse 
XORing of values is shown below. 









114117112100101104
1151099710632116105110

 

Here, value 110 is obtained by XORing 119 with 
25, 105 is obtained by XORing 90 with 51 and so on. 

 
IV. AN ILLUSTRATION OF PROPOSED 

CIPHER 
The byte values of a message of size 21 bytes 

which has to be secured are 107, 114, 105, 115, 104, 110, 
97, 32, 105, 115, 32, 97, 32, 103, 111, 111, 100, 32, 98, 111 
and 121. The key used is (80 108 97 121 102 105 114 32 99 
112 104 101). The encryption and decryption processes are 
illustrated below. 
 
A. Message Encryption 
The key matrix from the key is formed as shown in Table I. 
 
1. Block Matrix Formation: The block matrix formed 

from the plain message is shown below. 















1211119832100
111111103329732115105
3297110104115105114107

 

 
2. XORing of Values: The random numbers generated 

using LFSR as shown in section III.B.2 are used to 
perform XORing. So, the first 21 random numbers are 
used to XOR with the corresponding values in the block 
matrix in the first round. For the second round, next 21 
random numbers in the sequence are used and so on. 
After performing XORing of values in the first round, 
block matrix looks as shown below. 















66242447119
230431972411372129212
25414892431901565114

 

 
3. Columnar Rotation of Values: After performing the 

columnar rotation of values using the formulas (1) and 
(2) in first round, the block matrix content is shown 
below. 
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













243190159212
23014197662424465114
25443892411372127119

 

 
4. Multidimensional Playfair Cipher Encryption: As we 

can see the first two rows in the block matrix consist of 
eight columns and the last row consists of five columns. 
Therefore, first two rows and the last row are encrypted 
using eight dimensional and five dimensional Playfair 
ciphers respectively. The block matrix content in the 
first round after multidimensional Playfair cipher 
encryption using the key matrix in Table I is shown 
below. 















1821124618113
22126148541755921367
759721811042249250165

 

 
The block matrix containing the cipher message after 

ten rounds is shown below. The byte values of cipher 
message formed of size 21 bytes are 236, 112, 11, 178, 111, 
44, 36, 103, 122, 236, 208, 244, 18, 247, 3, 163, 58, 13, 213, 
164 and 235. 















2351642131358
163324718244208236122
103364411117811112236

 

 
B. Message Decryption 
The key matrix is formed as shown in Table I. 
 
1. Block Matrix Formation: The block matrix formed 

from the cipher message is shown below. 















2351642131358
163324718244208236122
103364411117811112236

 

 
2. Multidimensional Playfair Cipher Decryption: The first 

two rows and the last row are decrypted using eight 
dimensional and five dimensional Playfair ciphers 

respectively. The block matrix content after 
multidimensional Playfair cipher decryption in the first 
round is shown below. 















222566229161
187642462382281617676
125314235892434138

 

 
3. Inverse Columnar Rotation of Values: Using the 

formulas (3) and (4), the block matrix content in the 
first round after inverse columnar rotation of values is 
shown below. 















238892434138
187324635566229161
125641422222281617676

 

 
4. Inverse XORing of Values: The random numbers that 

were used in the tenth round during XORing of values 
while encrypting are used in the first round during 
decryption to perform inverse XORing. The block 
matrix content after inverse XORing of values in the 
first round is shown below. 















721021861172
1262251351552174482250
20822165203238215013

 

 
The block matrix containing the decrypted message 

after ten rounds is shown below which is same as the 
original message. 















1211119832100
111111103329732115105
3297110104115105114107

 

The proposed cipher is implemented using C 
programming and executed in a computer having 2GB 
RAM, 64-bit processor with 2.16GHz speed and Ubuntu 
16.0 Operating System. Times taken by the proposed cipher 
for encryptions and decryptions of different data sizes are 
shown in Table II.

 
 

Table II. Encryption and decryption times for different data sizes 
Data size 
(in bytes) 

Encryption time 
(in micro seconds) 

Decryption time 
(in micro seconds) 

5 8 6 
50 66 64 

500 602 604 
5000 5827 5848 

50000 59491 59991 
 

V. SECURITY ANALYSIS 
Ciphertext only attack, known plaintext attack, 

chosen ciphertext attack, chosen plaintext attack and chosen 
text attack are the five main types of cryptanalytic attacks 
[1].  

Brute force attack is used in ciphertext only or 
known plaintext attack in which every possible key is used 
by an adversary to get the plain message from cipher 
message [22]. For AMPC, possible number of key matrices 

or keys is 256P256 (≈ 10506

More is the avalanche effect and confusion rate, 
less prostrate is the cipher to chosen ciphertext, chosen 
plaintext and chosen text attacks [22]. In AMPC, performing 
XORing of values, columnar rotation of values and 
multidimensional Playfair cipher encryption repetitively ten 
times during encryption and inverse operations during 
decryption for each block matrix formed constitutes to 30 
levels of confusion.  

) which is a large set. 
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Avalanche effect with respect to one bit change in 
key is high because random numbers sequence generated 
will change which in turn causes change in the output of 
XORing of values step and hence changes in the output of 
its subsequent steps. For example, a message whose byte 
values are 107, 114, 105, 115, 104, 110, 97, 114, 97, 106, 
32, 118, 97, 114, 97, 100, 104, 97, 114, 97 and 106 is 
considered for encryption using the key (80 108 97 121 102 
105 114 32 99 112 104 101). The corresponding byte values 
of the cipher message are 77, 216, 205, 160, 133, 16, 111, 
30, 164, 12, 116, 191, 226, 225, 54, 13, 25, 2, 71, 59 and 55. 
Now, for the same message one bit change in the key is 
done resulting in the new key (80 108 96 121 102 97 105 
114 32 99 112 104 101). The corresponding byte values of 
the cipher message are 101, 234, 228, 169, 90, 241, 34, 6, 
182, 214, 73, 78, 249, 164, 56, 159, 162, 155, 96, 167 and 
145. It can be seen that the two cipher messages formed are 
completely different in each corresponding byte values. 
When these two sequences are represented in bits, there are 
differences in 79 bit locations out of 168 bit locations 
constituting to 47 percent difference.  

Avalanche effect with respect to one bit change in 
plain message mainly depends on the step: columnar 
rotation of values. By changing the one bit in plain message, 
the rotation pattern of the column containing the value in 
which one bit change is done will always vary in the first 
round itself if the number of rows is 256. Else, rotation 
pattern will most probably always vary in any one of ten 
rounds. Once, the rotation pattern varies output of columnar 
rotation of values step changes which in turn causes the 
changes in the output of its subsequent steps. For example, a 
message whose byte values are 107, 114, 105, 115, 104, 
110, 97, 114, 97, 106, 32, 118, 97, 114, 97, 100, 104, 97, 
114, 97 and 106 is considered for encryption with the key 
(80 108 97 121 102 105 114 32 99 112 104 101). The 
corresponding byte values of cipher message generated are 
already shown above. Now, using the same key, one bit 
change in message is done forming a new message with byte 
values: 107, 114, 105, 115, 104, 110, 96, 114, 97, 106, 32, 
118, 97, 114, 97, 100, 104, 97, 114, 97 and 106. The byte 
values of new cipher message formed are 176, 244, 218, 92, 
188, 140, 33, 233, 120, 177, 139, 18, 181, 172, 55, 247, 244, 
207, 140, 163 and 239. It can be seen that the two cipher 
messages formed are completely different in each 
corresponding byte values. When these two sequences are 
represented in bits, there are differences in 102 bit locations 
out of 168 bit locations constituting to 60 percent difference.  

From the security analysis it can be inferred that 

AMPC is strong against all five major types of cryptanalytic 
attacks. 
 

VI. COMPARISON ANALYSIS 
Table III shows the comparison between AMPC 

and the existing Playfair cipher variants done on the basis of 
number of characters/values supported, possible number of 
keys, number of confusion levels, avalanche effect with 
respect to one bit change in key and plain message, nature of 
ambiguity and cipher message size Vs plain message size. 

Possible number of keys is calculated by using the 
number of characters/values in key matrix. If M is the 
number of characters/values then possible number of keys is 
M! (! means factorial) except for the Playfair variants 
proposed by Charles [1], Murali et al [5], Sastry et al [6] 
and Chand et al [16]. For variants proposed by Charles and 
Murali et al, it is (M – 1)!. For variant proposed by Sastry et 
al, it is 128P64 and by Chand et al, it is (M!)4. 

Number of confusion levels is counted based on 
number of steps in encryption process. If only one 
substitution is done as in case of variant proposed by 
Charles then count is 1. If random numbers generated using 
LFSR are mapped to secret key and numbers with respect to 
cipher letters are transmitted as in case of variant proposed 
by Murali et al 

From the comparison analysis it can seen that 
AMPC is the best when all the comparison factors are 
combined together.

then count is 2. 
Avalanche effect is low when only the bits that get 

affected are those of the values in the same group or at the 
corresponding location as that of the value either in plain 
message or key whose one bit is changed. Avalanche effect 
is high when the bits of all the values of all the groups get 
affected by changing one bit of any value in plain message 
or key. Avalanche effect is moderate when it is neither low 
nor high. 

Cipher message size is not always equal to plain 
message size for the existing Playfair variants. For variants 
using filler values, the cipher message size depends on the 
presence of consecutive repeating values in the plain 
message, plain message length and number of bits used to 
represent a value in cipher message. Due to this, for existing 
variants, sometimes the cipher message size will be more 
than twice the size of plain message consuming lots of 
memory and bandwidth. For AMPC, plain message size and 
cipher message size are always equal making it memory and 
bandwidth efficient. 

 
 

Table III. Comparison table 
Playfair 

variant by 
Number of 
characters/ 

values 
supported 

Possible 
number 

of 
keys 

Number of 
confusion 

levels 

Avalanche effect with respect 
to one bit change in 

Nature of 
ambiguity 

Cipher 
message size 

(CS)  
Vs  

Plain message 
size (PS) 

Key Plain 
message 

Charles [1] 26 ≈ 10 1 25 low low ambiguous CS >= PS 

Murali et al 26 [5] ≈ 10 2 25 low low ambiguous CS >= PS 

Sastry et al 128 [6] ≈ 10 33 126 high high unambiguous CS = PS 
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Srivastava et 
al 

64 
[7] 

≈ 10 2 89 high low or moderate or 
high 

ambiguous CS >= PS 

Basu et al [8] 90 ≈ 10 1 138 low low ambiguous CS >= PS 

Dhenakaran et 
al [9] 

256 ≈ 10 1 506 low low unambiguous CS >= PS 

Kaur et al 36 [10] ≈ 10 2 41 low low ambiguous CS >= PS 

Kaur et al 64 [11] ≈ 10 1 89 low low ambiguous CS >= PS 

Alam et al [12] 26 ≈ 10 1 26 low low unambiguous CS >= PS 

Kaur et al [13] 64 ≈ 10 2 89 high low ambiguous CS >= PS 

Singh et al 
[14] 

64 ≈ 10 2 89 high low ambiguous CS >= PS 

Verma et 
al 

64 
[15] 

≈ 10 2 89 high low ambiguous CS >= PS 

Chand et 
al 

36 
[16] 

≈ 10 4 164 low low ambiguous CS >= PS 

Hans et al [17] 26 ≈ 10 3 26 high low ambiguous CS >= PS 

Singh et al 
[18] 

64 ≈ 10 2 89 high low ambiguous CS >= PS 

Bhat et al [19] 260 ≈ 10 4 516 high low or moderate or 
high 

unambiguous CS > PS 

This work 256 ≈ 10 30 506 high high unambiguous CS = PS 

 
VII. CONCLUSION 

AMPC is a symmetric cipher that can be used to 
secure any kind of information without any ambiguity just 
by supporting 256 values that can be stored in a byte 
memory which was not possible by any existing Playfair 
cipher variant. From the security analysis it is seen that 
AMPC is strong against all five major types of cryptanalytic 
attacks. Comparison analysis says that AMPC is efficient in 
terms of memory utilization, strong in terms of security and 
has more applicability when compared to all other variants. 
Therefore, AMPC is the best among all Playfair cipher 
variants. 
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