
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 219

ISSN No. 0976-5697

Partitioning Techniques in Cloud Data Storage: Review Paper

Kiranjit Kaur

Research Scholar
Guru Kashi University

Talwandi Sabo, Punjab, India

Vijay Laxmi
Dean and Professor UCCA

Guru Kashi University
Talwandi Sabo, Punjab, India

Abstract: As there is large amount of data generated from various web applications which are difficult to manage in cloud databases. Solution to
this problem is to partition the data. In this paper three techniques named Horizontal, vertical and workload driven partitioning are reviewed. The
main focus of the paper is to compare these techniques on the bases of complexity, scalability, consistency and number of distributed
transactions. It provides result, based on that we can choose the most relevant partitioning technique to store cloud data.

Keywords: Cloud database, horizontal partitioning, vertical partitioning, workload driven partitioning, complexity, scalability, consistency,
distributed transactions

I. INTRODUCTION

Cloud computing is a technology which provide us various
services free of cost. One of the main services is that it
provides is the facility to store data in a cloud, which can be
accessed anywhere, anytime with World Wide Web (WWW).
It not only reduces the cost and but also reduce the risk of data
loss.

In this review paper, the major concerned is on cloud data
storage and the partitioning techniques used for it. In the early
days, cloud data was stored on Traditional Database
Management System. With the advancement in technology,
Data generated from web applications like Facebook, Twitter
and etc. become bigger and bigger. It was difficult for
traditional database systems to manage this data so new data
store named NoSQL was developed. To further increase the
performance of these data stores, partitioning was used, which
improves various factors like scalability, efficiency and
availability
There were different partitioning techniques available:

A. Horizontal Partitioning
B. Vertical Partitioning
C. Workload Driven Partitioning

A. Horizontal Partitioning

In this technique, data was partitioned horizontally and then
these partitions stored on different machines. This technique
follow the principle of static partitioning means the partitions
once formed they cannot change. They remain same forever.
Some of the common partitioning techniques were Range,
Hashing, Schema and Graph Partitioning.

Range partitioning, partition the cloud data by using range of
keys. The value of these keys should be adjacent but they
should not be overlapped. Range of keys was decided on the
basis of some conditions or operators.
Hash Partitioning use circle or ring to represent the dataset.
The ring was divided into number of available node and each

node was mapped to a point in the ring. Hash function was
used for this mapping.

Schema Partitioning was basically designed to minimize the
distributed transactions. In this database schema was
partitioned in such a way that related rows kept in the same
partition instead of separating them in different partitions.
Graph partitioning was workload- based static partition in
which partition were made by analysing the pattern of data.
But once partitioning was done, it never changes. Means in
starting this technique generates partition on the basis of
workload of cloud data. But after that it never repartitions the
storage and never observed the changes in workload.

B. Vertical partitioning
In this technique, data was partitioned vertically. It was also
called column partitioning where set of columns was stored on
different segments and distributing them accordingly. In this
no two critical columns stored together which improve
security of data.

C. Workload Driven Partitioning
In this technique, data generated from the web application was
used. It analysis the data access pattern of web application and
form partitions according to that. This improves the scalability
of transactions in terms of throughput and response time.

II. LITERATURE REVIEW

Researchers have proposed a variety of systems and partition
techniques to provide scalable transaction support for web
applications. Some of them have been listed here:
C Curino et al. (2010) proposes workload based static
partitioning algorithm which was based on graph partitioning.
In this K-way min-cut graph partition algorithm was applied
to improve the throughput and reduce the number of
distributed transactions. The rows, which are accessed in a
transaction, are kept on one partition to reduce the distributed
transactions [1].

Kiranjit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,219-221

© 2015-19, IJARCS All Rights Reserved 220

Y. Zhao et al. (2012) propose partition based data storage
model. This paper describes three algorithms about partition
and storage of data, about data query and connection and
about fragment updation and re-partitioning. In this model
more number of fragments may occurs which can decrease the
performance and re-partition may results in lower efficiency
of traversal query [2].

K. Grolinger et al. (2013) describe different partitioning
techniques used by NoSQL data stores to achieve scalability.
Their names were range partitioning and consistent hashing.
Range partitioning stores the partitioned data on different
servers based on ranges of a partition key. Data storage and
read/write was handled by servers with specific range of keys.
In this technique adjacent keys reside on same node so range
queries were processed effectively. The problem with this
technique is that it can lead load balancing issues.
BerkeleyDB, Cassandra, HBase and MongoDB cloud data
stores that implement range partitioning. In consistent
hashing, nodes were placed in a ring. The ring was divided
into ranges which were equal to the available nodes.
Voldemort, Riak, DynamoDB, CouchDB, VoltDB and
Clustrix cloud data stores that implement consistent hashing
[3].

S. Das et al. (2013) propose schema level partitioning. It was
a static partitioning scheme which was designed to improve
the scalability of ElasTras. It’s named Schema level
partitioning because it was derived from the TPC-C schema.
In the schema level, data partitioning was based on the
partitioning key. The related rows of table were located on a
single partition which minimizes the distributed transactions
[4].

S. Phansalkar et al. (2014) presents transaction-aware
partitioning; it used vertical partitioning for improving
scalability. The main aim of the author was to decrease
response time and optimized cost of processing [5].

L. Chaple et al. (2016) implements workload driven approach
based on MongoDB. It was also designed for improving
scalability. The approach was implementation by
experimenting on MongoDB cloud data store. This approach
generates less number of distributed transactions and
improves scalability too [6].

J. Kohler et al. (2016) propose vertical partitioning for cloud
data stores. It stores sets of columns into different segments
and distributing them accordingly. For example, vertical
partitioning segments contain predefined groups of columns.
So data stores from the column-family category can provide
vertical partitioning in addition to horizontal partitioning. One
thing that was important in this is that no two critical
attributes of a relation was stored in a single partition. It helps
to improve privacy and security of data [7].

III. COMPARISION FACTORS

In this part analysis is done on different partitioning
techniques used by different data stores based on important
parameters like complexity, scalability, consistency and
number of distributed transactions.

A. Complexity
This factor determines the implementation level of a
partitioning technique. Some techniques are easy to
implement and some are difficult ones. It is measured in terms
of low/moderate/high.

B. Scalability
 In this paper scalability measurement is performed in terms
of throughput and response time. A technique is highly
scalable if it optimized the throughput and response time both.
This factor helps to achieve high performance. It is measured
in terms of low/moderate/high.

C. Consistency
When there are multiple copies of the data in data store. To
maintain that data consistency is required means all copies of
the data must be same and updated at the same time.
Consistency is measured in terms of strongly
consistent/consistent/configurable/eventually consistent.

D. Distributed Transactions
In cloud storage data is distributed on different servers.
Different partitioning techniques are used to manage this data.
Number of distributed transactions occurs when this data is
accesed. These transactions should be less to achieve
efficiency.

IV. GRAPHICAL ANALYSIS

In this paper comparison of different partitioning techniques is
done on the bases of different important parameters.

Table 1: Show values of parameters in different partitions

Partition/
Data

Complexity Scalability Consistency Distributed
Transactions

Range 1 1 4 3

Hash 1 1 2 3

Graph 3 1 1 3

Schema 2 2 1 1

Vertical 1 2 1 1

Workload
Driven

2 3 3 1

In complexity, scalability and distributed transactions number
representation is 1-Low/Less, 2-Medium/Moderate, 3–
High/More. Where consistency is measured 1-Eventually
Consistent, 2-Configurable, 3-Consistent, 4-Strongly
Consistent. As per values the chart is drawn to identify the
relation between different partitions.

Kiranjit Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,219-221

© 2015-19, IJARCS All Rights Reserved 221

A. Complexity
Range and hash partitions are simple and easy to use. These
techniques were the most popular ones because of simplicity
and easy implementation. Range partitioning was used in
BerkeleyDB, HBase [8], MongoDB [9] and etc. Hash
partitioning is used in Riak, DynamoDB [10], VoltDB [11],
CouchDB [12], Clustrix [13] and many other data stores.
Graph partitioning is complex and difficult to implement.
Data store that implement this partition is HyperGraphDB.
Schema partition is neither easy nor difficult; it’s in the
moderate level of complexity. It is implemented on ElasTrans
data store which is an elastic, scalable and self managing
transactional cloud data store.
In vertical partitioning, data is divided into columns which is
simple and easy to do. It is implemented on SimpleDB, HBase
and other cloud data stores. Workload Based partitioning is
based on the analysis of data access patterns and then make
partitions according to that. Web generated data is analysed
continuously to reform the partitions after some interval. Its
complexity level is moderate. It is implemented on many
NoSQL cloud data stores e.g. MongoDB.

B. Scalability
Here Scalability refers to measurement of partitioning
performance in terms of throughput and response time. Range,
Hash, Graph have low scalability whereas Schema and
Vertical are moderate and workload based approach is highly
scalable.

C. Consistency
Range and workload based partitioning are consistent. Graph,
schema and vertical partitions are eventually consistent
whereas Hash partition is configurable means they can be
configured to maintain consistency.

D. Distributed Transactions
As the number of distributed transactions increase, the
efficiency of partitioning techniques decreased. Range, Hash
and Graph partitions generate more number of distributed
transactions. In Schema, vertical and workload based

partitions distributed transactions are less which makes them
more efficient.

V. CONCLUSION

In this review paper, we have discussed various partitioning
techniques used in cloud data storage and compared them. We
gave critical review on complexity, scalability, consistency
and distributed transactions parameters of different
partitioning techniques.

We found that Range partitioning is used where ease of use
and strong consistency is required. Vertical partition is used to
reduce the number of distributed transactions. Workload
based partitioning technique is the suitable choice where
scalability, consistency and less number of distributed
transactions are main considerations.

VI. REFRENCES

[1] C. Curino et al., “Schism: A workload driven approach to

database Replication and Partitioning”, in Proc.36th

international conference on VLDB, pp. 48-57, Sept. 2010.
[2] Y. Zhao and Y. Wang, “Partition-based cloud data storage and

processing model” IEEE 2nd International Conference on Cloud
Computing and Intelligent Systems, vol.1, pp. 218-223, 2012.

[3] K. Grolinger et al., “Data Management in cloud environments:
NoSQL and NewSQL data stores”, Springer Open Journal:
Journal of Cloud Computing: Advances, Systems and
Applications, December 18, 2013.

[4] S. Das, D. Agrawal and A. E. Abbadi, “ElasTrans: An Elastic,
Scalable and self managing transactional database for the
cloud”, ACM Transactions on Database Systems (TODS), vol.
38, no. 1, pp. 5:1-5:45, April 2013.

[5] S. Phansalkar and A. Dani, “Transaction aware Vertical
partitioning of Databases (tavpd) for responsive oltp
applications in cloud data stores”, Journal of Theoretical and
Applied Information Technology, vol. 59, no. 1, January 10,
2014.

[6] L. Chaple and S. Ahirrao, “Scalable transactions using
MongoDB cloud data store”, Journal of Theoretical and
Applied Information Technology, vol. 89,no. 1, July 15, 2016.

[7] J. Kohler et al., “On the performance of Query Rewriting in
Vertically Distributed Cloud Databases”, Springer: Innovative
Approaches and Solutions in Advanced Intelligent Systems,
vol. 648, pp. 59-73, April 30, 2016.

[8] “ApacheHBase: Apache HBase Reference Guide”, Available:
https://hbase.apache.org/book.html

[9] “MongoDB”, Available: https://docs.mongodb.com/
[10] Decandia et al. , “Dynamo: Amazon’s highly available key

value store”, Proceedings of the 21st ACM Symposium on
Operating System Principles, ACM, New York, pp 205-
220,2007.

[11] “VoltDB: VoltDB technical overview”, Available:
http://voltdb.com/overview.

[12] “Apache CouchDB”, Available: http://couchdb.apache.org/.
[13] “Clustrix”, Available: http://www.clustrix.com.

