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Abstract: Branch prediction accuracy is a crucial parameter in determining the amount of parallelism that can be exploited. Current advanced 
branch prediction techniques are able to attain correct predictions in most cases. Conventionally, the profiling information is used to predict the 
behavior of a branch. However, they are unsuccessful in predicting specific conditions like non linear branching and looping. This prevents them 
from achieving full accuracy. SVM have an inherent capability to analyze inputs to form meaningful relationships among them.  
Keywords: Branch prediction, SVM  

I. INTRODUCTION 

Correct branch prediction is important especially in the 
age of super-pipelined superscalar processors. Highly 
accurate prediction is required to reduce the number of 
penalty cycles in the multiple instruction issue processors. 
Branch prediction is an essential part of modern micro 
architectures. Rather than stalling when a branch is 
encountered, a super pipelined processor uses branch 
prediction to speculatively fetch and execute instructions 
along the predicted path. Machine learning techniques offer 
the possibility of further improving the performance by 
increasing prediction accuracy.In our approach, we consider 
branch prediction as a specific problem belonging to the 
pattern recognition and in particular to the use of SVM 
based learning technique to predict the branches. The SVM 
have several attractive properties. They are simpler to 
implement and tune, their training is faster, and they are 
computationally inexpensive. In this Thesis, we investigate 
the behavior of the branches and loops.We capture the 
various characteristics of the branches and loops and feed 
them to a SVM to correctly predict the general branches and 
branches in the loop.  

A. Branch Prediction 
Originally branch predictors relied on static prediction 

schemes such as taken or not-taken and compiler help in 
determining branch outcome. Several dynamic branch 
prediction architectures have evolved due to heavy research 
in these areas. Dynamic branch predictors include one-bit 
table of counters, 2-bit table of counters and two level 
implementations of the counters to account for global 
history. Several implementations of predictors based on 
other ideas such as perceptrons [2] are emerging and may 
allow the fundamental limit of control dependences on ILP 
to be decreased. 

Correct branch prediction is important especially in the 
age of super-pipelined superscalar processors. Highly 
accurate prediction is required to reduce the number of 
penalty cycles in the multiple instruction issue processors. 
The number of penalty cycles decides the performance loss 
for processors whose pipeline depth and instruction issue 
rate are high. Branch prediction is an essential part of 

modern micro architectures. Rather than stalling when a 
branch is encountered, a super pipelined processor uses 
branch prediction to speculatively fetch and execute 
instructions along the predicted path. Machine learning 
techniques offer the possibility of further improving the 
performance by increasing prediction accuracy. 

B. SVM:  
First of all working with neural networks [13] for 

supervised and unsupervised learning showed good results 
while used for learning applications. Multilayer perceptron 
(MLP)[12] uses feed forward and recurrent networks.  The 
properties of MLPs include universal approximation of 
continuous nonlinear functions, learning with input-output 
patterns and also involve advanced network architectures 
with multiple inputs and outputs. 

 

 

Figure 1[a.Simple Neural Network, 1 b.Multilayer Perceptron.] 



Asis Kumar Tripathy et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,310-313 

© 2010, IJARCS All Rights Reserved   311 

These are simple visualizations just to have an overview as 
how neural network looks like. 

II. LITERATURE SURVEY 

 Several attempts are made for successful 
implementation of branch prediction. Both static and 
dynamic branch prediction methods are useful. S. Patil, N. 
B.Anne, U. Thirunavukkarasu and E. E. Regentova[1] 
proposed a new branch prediction algorithm. Study of 
simple loop structures reveals certain parameters that give 
information about their characteristics. Danie A. Jimenez 
and Calvinlin [2] introduced a new branch predictor that 
uses neural learning techniques—the perceptron in 
particular—as the basic prediction mechanism. Burch [3] 
proposed a case study on static and dynamic branch 
prediction that shows merits and demerits of both the 
methods. Gummaraju and Franklin[4] proposed three 
methods to implement dynamic branch prediction in 
multithreaded processor that shows significant improvement 
in performance. 

In his paper Hoogerbrugge [5] shows the improved 
results for a VLIW Processor using dynamic branch 
prediction. Steven, Anguera, Egan, Steven and  Vintan [6] 
proposed a paper Improvement of Dynamic Branch 
Prediction using Neural Networks .Loh[7] proposed a case 
study simulation Difference Between Academia and 
Industry and  he presented a comparative Study of two 
differene simulate on framework one for Academy and other 
for Industry.H. Loh[7] present  a simple Divide and Conquer 
Approach  for Neural class branch prediction. He chooses to 
design a new predictor that is quite different from previous 
neural approaches but still takes advantage of the same 
phenomena of deep history branch correlation. Neural Class 
branch predictor’s able to achieve phenomenal prediction 
rate and IPC performance using only simple PHT 
structures.Ribas and Goncalves[8]  shows  work on Branch 
Prediction  performance using Two-level perceotron Table. 
This work evaluates the performance of branch predictors 
based on multiplier perceptrons organized in two level 
tables. Guy III and Haggard [9] gives a paper high 
performance Branch predication. In this paper GHT-Logic 
architecture did not use a PHT and thus is much easier and 
smaller to implementation.Quinones and parcerisa [10] 
proposed a different approach ,which predicts the out comes 
of branches by predicting there guarding predicates.The 
predications  are made  for every  predicate definition and 
store until the predicate is used by some branch.Daniel A. 
Jim´enezy Heather L. Hansonz Calvin Lin [11]These 
Boolean formulas provide a compact encoding of a class of 
functions that is expressive enough to perform branch 
prediction yet concise enough to be encoded in branch 
instructions.  

III. PROBLEM STATEMENT: BRANCH 
PREDICTION 

Small improvements in accuracy can have a large 
impact on performance; decreasing the misprediction rate 
from, say, 5% to 4% can decrease the execution time of a 
typical program by as much as 14%. Here, we propose a 
novel branch prediction scheme using SVM which can 
achieve a very better accuracy. We assume that all 
predictions are being made in parallel to the instruction 

decode (ID) stage of the processor pipeline. The actual 
prediction is generated by a SVM. The 80386 instruction set 
is considered in our study.  

IV. BRANCH PREDICTION USING SVM 

SVM are a family of algorithms remarkably efficient in 
many real-world applications. A growing interest for SVM 
in bioinformatics has emerged recently and resulted in 
powerful methods for various tasks. 
A SVM basically learns how to classify objects x ∈ X into 
two classes {−1, +1} from a set of labeled training examples 
{x1. . . xm}.  

The resulting classifier is based on the decision 
function: 
f(x) = ∑ i=1

m λiK(xi, x) where x is any new object to be 
classified, K(., .) is a so-called kernel function and the 
coefficients {λ1, . . . , λm} are learned during training by 
solving a constrained optimization problem. 
The kernel K can be considered as a dot product between 
objects, or more precisely between the images of the objects 
after a mapping to a highdimensional Hilbert space. As a 
result it defines the metric properties of the space of objects, 
namely the “size” of each object and the “angle” between 
any two objects.  
Let’s takes some MIPS Assembly language code  
Beq     $at,    $0,     L                            pcsrc=1    Branches  
Add          $V1, $0,    $0                      to   pc+4+(offset*4)  
Add    $v1,   $v1,    $v                 pcsrc=0 
continues to  
J   somewhere                                   pc+4

A. Fetch the instruction like    beq    $at,    $0,     offset 
from memory  

                              
L:  add     $v1, $v0, $v0 

B. Read the source register from the register file  
C. Compare the values by subtracting them in the ALU  
D. If the subtraction result is 0 the source operands were 

equals and the pc should be loaded with the target 
address, PC+4+(offset*4)  

E. E. Otherwise the branches should not be taken   and the 
PC should just be incremented PC +4 to fetch the next 
instruction  

Algorithm   
Correctly classify all training data  
Let take   w =weight each instruction set and xi=address of 
instruction set 
wxi+b>=1     if yi=+1  for   Pcsrc=1 
wxi+b>=-1     if yi=-1  for   Pcsrc=0  
yi (wxi+b)>=1 for all   i  
Maximize margine        Same as   1/2wtw  
We can formulate a Quadratic Optimization Problem and 
solve for w and b 
Minimize ф(w)= 1/2wtw  
Subject to      yi(wxi

B. SVM[i]’s weights, SVM 

+b)>=1       Pcsrc =1 for all i 
This equation   is represented all  branch instructions present 
in the instruction sample .  
When a branch is encountered: 
A.The branch address is hashed to index i, to access SVM[i] 

α

C. The dot products ki = Ker (PHT, SVM

 [i], are fetched into an vector 
register of floating point weights, α = (α 0 . . . α m).  

 α[i]) for i € {1 . . 
.m} are calculated in parallel. There are many simple 
kernels available for which this is a fast computation.  
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D. The value of y is computed as the dot product of SVM 

α[i]and the global history register.  
E. The results of the multiplications and the bias,  

y = b0 +∑m
i=1 K (PHT, SVM α[i]  )       

 
 
 
 
 
 
 
 

Figure. 12 
 

The SVM prediction mechanism. The prediction is the 
sign of the dot product of the branch history and the Svm 
weights. The taken branches (T) in the branch history are 
represented as 1’s, and not taken branches (NT) are 
represented as >=1’s. The bias weight represents the bias of 
the branch independent of branch history, so its input bit is 
hardwired to 1.  Correlation between the behavior of a past 
branch and the behavior of the branch being predicted. 
Positive weights represent positive correlation, and negative 
weights represent negative correlation. To make a 
prediction, each weight contributes in proportion to its 
magnitude in the following manner. If its corresponding 
branch was taken, we add the weight; otherwise we subtract 
the weight. If the resulting sum is positive, we predict taken; 
otherwise we predict not taken. To make this solution work, 
the branch history uses 1 to represent taken and >=1 to 
represent not taken. The perceptrons are trained by an 
algorithm that increments a weight when the branch 
outcome agrees with the weight’s correlation and 
decrements the weight otherwi 

 

 are      summed.  
F. The branch is predicted not taken when y is negative, or 

taken otherwise. Once the actual outcome of the branch 
becomes known, the training algorithm uses this 
outcome and the value of y to update the weights.  

G.  The final prediction is the sign of y.  
The predictor stores the value of i, for later training of 

SVM[i]. 
A SVM is a learning device that takes a set of input 

values and combines them with a set of weights (which are 
learned through training) to produce an output value. In our 
predictor, each weight represents the degree of 

 

V. PREDICTION USING SVM 

Total sample  Train sample Validation Test sample     
Prediction 

VI. CONCLUSIONS 

In this paper a novel branch predictor that uses SVM  
learning techniques has been introduced. The SVM in 
particular is used as the basic prediction mechanism with 
suitably formulated inputs. The ability of SVM to use long 
history lengths is a key advantage .These long history 
lengths lead to better accuracy. Weakness of perceptron in 
the single layer form is its inability to learn linearly 
inseparable functions. This is a limitation of existing branch 
predictors using perceptrons. Another strength of SVM is its 
ability to learn linearly inseparable functions. The training 
of the learning network is relatively easy, when the SVM is 
used. Further no local optimal solution evolves, unlike in 
neural networks. It scales relatively well to high dimensional 
data and the trade-off between classifier complexity and 
error can be controlled explicitly. 
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