
Volume 2, No. 1, Jan-Feb 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 310

ISSN No. 0976-5697

A Novel Approach for Branch Prediction using SVM

Pradipta Mishra
HiTech Institute of Technology

Bhubaneswar,Orissa,India
pradipta.system@gmail.com

Asis Kumar Tripathy
NM Institute of Engineering and Technology

*

Bhubaneswar,Orissa,India
asistripathy@gmail.com

Abstract: Branch prediction accuracy is a crucial parameter in determining the amount of parallelism that can be exploited. Current advanced
branch prediction techniques are able to attain correct predictions in most cases. Conventionally, the profiling information is used to predict the
behavior of a branch. However, they are unsuccessful in predicting specific conditions like non linear branching and looping. This prevents them
from achieving full accuracy. SVM have an inherent capability to analyze inputs to form meaningful relationships among them.
Keywords: Branch prediction, SVM

I. INTRODUCTION

Correct branch prediction is important especially in the
age of super-pipelined superscalar processors. Highly
accurate prediction is required to reduce the number of
penalty cycles in the multiple instruction issue processors.
Branch prediction is an essential part of modern micro
architectures. Rather than stalling when a branch is
encountered, a super pipelined processor uses branch
prediction to speculatively fetch and execute instructions
along the predicted path. Machine learning techniques offer
the possibility of further improving the performance by
increasing prediction accuracy.In our approach, we consider
branch prediction as a specific problem belonging to the
pattern recognition and in particular to the use of SVM
based learning technique to predict the branches. The SVM
have several attractive properties. They are simpler to
implement and tune, their training is faster, and they are
computationally inexpensive. In this Thesis, we investigate
the behavior of the branches and loops.We capture the
various characteristics of the branches and loops and feed
them to a SVM to correctly predict the general branches and
branches in the loop.

A. Branch Prediction
Originally branch predictors relied on static prediction

schemes such as taken or not-taken and compiler help in
determining branch outcome. Several dynamic branch
prediction architectures have evolved due to heavy research
in these areas. Dynamic branch predictors include one-bit
table of counters, 2-bit table of counters and two level
implementations of the counters to account for global
history. Several implementations of predictors based on
other ideas such as perceptrons [2] are emerging and may
allow the fundamental limit of control dependences on ILP
to be decreased.

Correct branch prediction is important especially in the
age of super-pipelined superscalar processors. Highly
accurate prediction is required to reduce the number of
penalty cycles in the multiple instruction issue processors.
The number of penalty cycles decides the performance loss
for processors whose pipeline depth and instruction issue
rate are high. Branch prediction is an essential part of

modern micro architectures. Rather than stalling when a
branch is encountered, a super pipelined processor uses
branch prediction to speculatively fetch and execute
instructions along the predicted path. Machine learning
techniques offer the possibility of further improving the
performance by increasing prediction accuracy.

B. SVM:
First of all working with neural networks [13] for

supervised and unsupervised learning showed good results
while used for learning applications. Multilayer perceptron
(MLP)[12] uses feed forward and recurrent networks. The
properties of MLPs include universal approximation of
continuous nonlinear functions, learning with input-output
patterns and also involve advanced network architectures
with multiple inputs and outputs.

Figure 1[a.Simple Neural Network, 1 b.Multilayer Perceptron.]

Asis Kumar Tripathy et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,310-313

© 2010, IJARCS All Rights Reserved 311

These are simple visualizations just to have an overview as
how neural network looks like.

II. LITERATURE SURVEY

 Several attempts are made for successful
implementation of branch prediction. Both static and
dynamic branch prediction methods are useful. S. Patil, N.
B.Anne, U. Thirunavukkarasu and E. E. Regentova[1]
proposed a new branch prediction algorithm. Study of
simple loop structures reveals certain parameters that give
information about their characteristics. Danie A. Jimenez
and Calvinlin [2] introduced a new branch predictor that
uses neural learning techniques—the perceptron in
particular—as the basic prediction mechanism. Burch [3]
proposed a case study on static and dynamic branch
prediction that shows merits and demerits of both the
methods. Gummaraju and Franklin[4] proposed three
methods to implement dynamic branch prediction in
multithreaded processor that shows significant improvement
in performance.

In his paper Hoogerbrugge [5] shows the improved
results for a VLIW Processor using dynamic branch
prediction. Steven, Anguera, Egan, Steven and Vintan [6]
proposed a paper Improvement of Dynamic Branch
Prediction using Neural Networks .Loh[7] proposed a case
study simulation Difference Between Academia and
Industry and he presented a comparative Study of two
differene simulate on framework one for Academy and other
for Industry.H. Loh[7] present a simple Divide and Conquer
Approach for Neural class branch prediction. He chooses to
design a new predictor that is quite different from previous
neural approaches but still takes advantage of the same
phenomena of deep history branch correlation. Neural Class
branch predictor’s able to achieve phenomenal prediction
rate and IPC performance using only simple PHT
structures.Ribas and Goncalves[8] shows work on Branch
Prediction performance using Two-level perceotron Table.
This work evaluates the performance of branch predictors
based on multiplier perceptrons organized in two level
tables. Guy III and Haggard [9] gives a paper high
performance Branch predication. In this paper GHT-Logic
architecture did not use a PHT and thus is much easier and
smaller to implementation.Quinones and parcerisa [10]
proposed a different approach ,which predicts the out comes
of branches by predicting there guarding predicates.The
predications are made for every predicate definition and
store until the predicate is used by some branch.Daniel A.
Jim´enezy Heather L. Hansonz Calvin Lin [11]These
Boolean formulas provide a compact encoding of a class of
functions that is expressive enough to perform branch
prediction yet concise enough to be encoded in branch
instructions.

III. PROBLEM STATEMENT: BRANCH
PREDICTION

Small improvements in accuracy can have a large
impact on performance; decreasing the misprediction rate
from, say, 5% to 4% can decrease the execution time of a
typical program by as much as 14%. Here, we propose a
novel branch prediction scheme using SVM which can
achieve a very better accuracy. We assume that all
predictions are being made in parallel to the instruction

decode (ID) stage of the processor pipeline. The actual
prediction is generated by a SVM. The 80386 instruction set
is considered in our study.

IV. BRANCH PREDICTION USING SVM

SVM are a family of algorithms remarkably efficient in
many real-world applications. A growing interest for SVM
in bioinformatics has emerged recently and resulted in
powerful methods for various tasks.
A SVM basically learns how to classify objects x ∈ X into
two classes {−1, +1} from a set of labeled training examples
{x1. . . xm}.

The resulting classifier is based on the decision
function:
f(x) = ∑ i=1

m λiK(xi, x) where x is any new object to be
classified, K(., .) is a so-called kernel function and the
coefficients {λ1, . . . , λm} are learned during training by
solving a constrained optimization problem.
The kernel K can be considered as a dot product between
objects, or more precisely between the images of the objects
after a mapping to a highdimensional Hilbert space. As a
result it defines the metric properties of the space of objects,
namely the “size” of each object and the “angle” between
any two objects.
Let’s takes some MIPS Assembly language code
Beq $at, $0, L pcsrc=1 Branches
Add $V1, $0, $0 to pc+4+(offset*4)
Add $v1, $v1, $v pcsrc=0
continues to
J somewhere pc+4

A. Fetch the instruction like beq $at, $0, offset
from memory

L: add $v1, $v0, $v0

B. Read the source register from the register file
C. Compare the values by subtracting them in the ALU
D. If the subtraction result is 0 the source operands were

equals and the pc should be loaded with the target
address, PC+4+(offset*4)

E. E. Otherwise the branches should not be taken and the
PC should just be incremented PC +4 to fetch the next
instruction

Algorithm
Correctly classify all training data
Let take w =weight each instruction set and xi=address of
instruction set
wxi+b>=1 if yi=+1 for Pcsrc=1
wxi+b>=-1 if yi=-1 for Pcsrc=0
yi (wxi+b)>=1 for all i
Maximize margine Same as 1/2wtw
We can formulate a Quadratic Optimization Problem and
solve for w and b
Minimize ф(w)= 1/2wtw
Subject to yi(wxi

B. SVM[i]’s weights, SVM

+b)>=1 Pcsrc =1 for all i
This equation is represented all branch instructions present
in the instruction sample .
When a branch is encountered:
A.The branch address is hashed to index i, to access SVM[i]

α

C. The dot products ki = Ker (PHT, SVM

 [i], are fetched into an vector
register of floating point weights, α = (α 0 . . . α m).

 α[i]) for i € {1 . .
.m} are calculated in parallel. There are many simple
kernels available for which this is a fast computation.

Asis Kumar Tripathy et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,310-313

© 2010, IJARCS All Rights Reserved 312

D. The value of y is computed as the dot product of SVM

α[i]and the global history register.
E. The results of the multiplications and the bias,

y = b0 +∑m
i=1 K (PHT, SVM α[i])

Figure. 12

The SVM prediction mechanism. The prediction is the
sign of the dot product of the branch history and the Svm
weights. The taken branches (T) in the branch history are
represented as 1’s, and not taken branches (NT) are
represented as >=1’s. The bias weight represents the bias of
the branch independent of branch history, so its input bit is
hardwired to 1. Correlation between the behavior of a past
branch and the behavior of the branch being predicted.
Positive weights represent positive correlation, and negative
weights represent negative correlation. To make a
prediction, each weight contributes in proportion to its
magnitude in the following manner. If its corresponding
branch was taken, we add the weight; otherwise we subtract
the weight. If the resulting sum is positive, we predict taken;
otherwise we predict not taken. To make this solution work,
the branch history uses 1 to represent taken and >=1 to
represent not taken. The perceptrons are trained by an
algorithm that increments a weight when the branch
outcome agrees with the weight’s correlation and
decrements the weight otherwi

 are summed.
F. The branch is predicted not taken when y is negative, or

taken otherwise. Once the actual outcome of the branch
becomes known, the training algorithm uses this
outcome and the value of y to update the weights.

G. The final prediction is the sign of y.
The predictor stores the value of i, for later training of

SVM[i].
A SVM is a learning device that takes a set of input

values and combines them with a set of weights (which are
learned through training) to produce an output value. In our
predictor, each weight represents the degree of

V. PREDICTION USING SVM

Total sample Train sample Validation Test sample
Prediction

VI. CONCLUSIONS

In this paper a novel branch predictor that uses SVM
learning techniques has been introduced. The SVM in
particular is used as the basic prediction mechanism with
suitably formulated inputs. The ability of SVM to use long
history lengths is a key advantage .These long history
lengths lead to better accuracy. Weakness of perceptron in
the single layer form is its inability to learn linearly
inseparable functions. This is a limitation of existing branch
predictors using perceptrons. Another strength of SVM is its
ability to learn linearly inseparable functions. The training
of the learning network is relatively easy, when the SVM is
used. Further no local optimal solution evolves, unlike in
neural networks. It scales relatively well to high dimensional
data and the trade-off between classifier complexity and
error can be controlled explicitly.

VII. REFERENCE

[1] S. Patil, N. B.Anne, U. Thirunavukkarasu, E. E.
Regentova technical report Department of Electrical
and Computer Engineering University of Nevada, Las
Vegas

[2] Daniel A. Jimenez, Stephen W. Keckler, and Calvin
Lin. Then impact of delay on the design of branch
predictors.In Proceedings of the 33th Annual
International Symposium on Microarchitecture,
December 2000.

[3] Yu Wang & Lei Chen [2] technical report Department
of Computer Science Univer sity of California, Davis.

[4] Burch, “A case staudy of Static and Dynamic Branch
Prediction”, International conference, IEEE, 1997

[5] Gummaraju and Franklin, “Branch Prediction in multi-
Threaded Processors”International Conference on

4 1:0 2:1 4 1:0 2:1
8 1:4 2:1 8 1:4 2:1 44 1:40

2:1
12 1:8
2:4

12 1:8
2:4

48 1:44
2:2

64 1:60
2:2

63.99998

16 1:12
2:8

16 1:12
2:8

52 1:48
2:1

68 1:64
2:2

67.999978

 20 1:16
2:1

 20 1:16
2:1

56 1:52
2:1

72 1:68
2:8

71.999976

24 1:20
2:1

24 1:20
2:1

60 1:56
2:1

76 1:72
2:4

75.999974

28 1:24
2:2

28 1:24
2:2

 80 1:76
2:1

79.999972

32 1:28
2:2

32 1:28
2:2

36 1:32
2:4

36 1:32
2:4

40 1:36
2:8

40 1:36
2:8

44 1:40
2:1
48 1:44
2:2
52 1:48
2:1
56 1:52
2:1

Asis Kumar Tripathy et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,310-313

© 2010, IJARCS All Rights Reserved 313

parallel Architecture and Compilation Technique,
IEEE, 2000

[6] Hoogerbrugge , “Dynamic branch prediction for a
VLIW Processor”, International Conference,IEEE,2000

[7] Steven, Anguera, Egan, Steven and Vintan “Dynamic
Branch Prediction Using Neural Network”,International
Journal IEEE,2000

[8] Loh,”Simulation Difference between Academic and
Industry: A Branch Prediction case staudy”, IEEE, 2000

[9] H.Loh, “A Simple Divide and Conqure Approach for
Neural Class Branch Prediction”, International
Conference on parallel Architecture, IEEE.2005

[10] Ribas and Goncalves ,”Evalute branch prediction Using
Two-level Perceptron Table”,IEEE,20068.

[1]] Guy III and Haggard, “High Performance
Prediction”International journal, IEEE, 1996

[12] Fundamentals of Neural Networks Architectures,
Algorithms, and Application Laurene Fau sett Prentice
Hall International 1994

[13] Vikramaditya Jakkula technical report Department of
Computer Science of School of EECS, Washington
State University, Kernel machine, www.Kernel-
machine.org.

