
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 112

ISSN No. 0976-5697

Dynamic Coupling Based Performance Analysis of Object Oriented Systems

Brij Mohan Goel
Assistant Professor,

Vaish College of Engineering, Rohtak, India

Satinder Bal Gupta
Associate Professor,

Indira Gandhi University, Meerpur, Rewari, India

Abstract: This work is based on dynamic performance study. The DCBO (Dynamic Coupling Between Objects) that is known to be run time
version of CBO (Coupling Between Objects) is selected for the study. DCBO is a dynamic coupling metric which can be used to measure
coupling between objects at run time. This work focuses on empirically investigating DCBO at class, method and message levels using a set of
real world applications. A scenario based approach in combination with appropriate statistical techniques has been used in an attempt to capture
the correlation between static and dynamic coupling metrics and, in turn, the structural and performance aspects of object oriented software
system.

Keywords: Dynamic Coupling, Object Oriented Metrics, Performance, Use Case

1. INTRODUCTION

Theoretically every system is a stand-alone unit, but in
reality systems may depend on each other as either they
require services form other systems or provide services to
other systems. Thus, coupling between systems cannot be
completely avoided but can only be controlled. Coupling
between systems is an important factor that affects external
quality attributes of software e.g. understandability,
maintainability, reusability etc. But still, only a few
quantitative studies of the actual use of coupling have been
conducted at the system level. Coupling is one of the
internal attributes which is considered important due to its
profound repercussions for external software quality
attributes. In the past decade, a vast number of object
oriented coupling metrics have been proposed and validated.
But most of them are static in nature and do not take into
account the runtime behavior of object oriented software
systems. A lesser emphasis has been placed on designing
dynamic metrics. Of those proposed so far, only few have
been validated using real world applications inhibiting their
use in the software industry.

2. OBJECTIVES

• To assess the dynamic performance of object oriented

software system by carrying out an empirical validation
using real world applications.

• To exploit use case based approach to study the run
time performance of real world applications.

3. REVIEW OF LITERATURE

Mitchell and Power [10] proposed a set of metrics that are
designed to be applied to a software application at run time.
These new metrics seek to quantify coupling at different
layers of granularity that is at class-class and object-class
level. The first three metrics (DCBO, Degree of dynamic
coupling between two class and degree of dynamic coupling
within a given set of classes) are based on CK’s CBO
metric. These metrics are designed to evaluate run time class
coupling. The rest four metrics (RI, RE,RDI, RDE) measure

degree of import and export coupling at object level.
Mitchell and Power conducted a number of studies on the
quantification of a variety of run-time class-level coupling
metrics for object-oriented programs. They used statistical
analysis to investigate the differences in the underlying
dimensions of coupling captured by static versus the run-
time coupling metrics. The results indicated that the run-
time metrics did capture different properties than the static
metrics alone. So, it is worthwhile to continue the
investigation into run-time coupling metrics and their
relationship with external quality, as extra information can
be provided by the runtime metrics to complement that
obtainable from a static analysis. The study was carried out
on a set of java programs from JOlden Benchmark Suite,
SPECjvm98Benchmark Suite and some real world
programs.
Yourdon and Constantine [1] defined coupling as an abstract
concept which is a measure of degree of interdependence
among modules. They defined it as a measure of strength of
interconnections. Myers [2] in his work defined six distinct
levels of coupling to measure interdependence among
modules. Page-Jones [3] further defined a set of principles
which he adapted from Yourdon and Constantine’s
structured design. These principles defined the kind of
connections that are desired in modules. He refined coupling
levels defined by Myers by ordering them from high to low
level of coupling based on maintainability and reusability of
the coupled modules. Offutt et al. [4] extended the coupling
levels of Yourdon et al. and Myersto reflect the features of
modern programming languages. These coupling levels
offer a very fine grain resolution measures. They also
described algorithms to automatically measure the coupling
level between each pair of units in a program. The
parameters are classified by the way they are used for each
coupling level. Uses are classified into computation uses (C-
uses), predicate uses (P-uses) and indirect uses (I-uses). A
C-use occurs when a variable is used in an assignment
statement, in an output statement, or a procedure call. A P-
use occurs when a variable is used in a predicate statement.
An I-use occurs whenever a variable is a C-use that affects
some predicates in the module. The I-use is considered to
be in the predicate rather than in the assignment.

Brij Mohan Goel et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,112-115

© 2015-19, IJARCS All Rights Reserved 113

Hassoun et al. [5] proposed Dynamic Coupling Metric
(DCM) for object level coupling which takes program
execution into account. DCM can be used to measure the
coupling of particular objects and/or the entire system at
runtime. The DCM can also be used to predict the runtime
complexity of the system. The measure can be used to
compare systems built on meta level architectures with
systems having no reflective features yet, at the same time,
exhibiting the same interface. Their results state that classes
with high object couplings need more attention and care and
consequently induce higher maintenance cost.
Zaidman and Demeyer [6] proposed a metric Class Request
for Service (CQFS) metric to analyze event traces of large
scale industrial application. CQFS registers every message
that the instantiations of a certain class sends during the
execution of the program. This metric can abstract duplicate
instantiations from the same class but a downside is that
different objects that react differently due to the
polymorphic behavior also get abstracted. They based their
results on the fact that classes which have more than average
responsibilities have a greater coupling compared to other
classes.

4. METHODOLOGY

4.1 Scenario based Applications
Scenarios represent a series of actions that are associated
together. Scenarios are like short stories about users
describing how they use the system [7]. Scenarios may be
defined as path of interaction which may occur among use
cases. A use case defines a goal-oriented set of interactions
between external users and the system under consideration
or development. Use cases are used to capture functional
requirements in the object-oriented software design [8]. A
Use Case Scenario is a description that illustrates, step by
step, how a user is intending to use a system, essentially
capturing the system performance from the user's point of
view. A use case scenario can include stories, examples, and
drawings. Use cases are extremely useful for describing the
problem domain in unambiguous terms and for
communicating with the potential users of a system [8]. It
describes an interaction between a user and a system that
produces some useful outcome. For example: If Use case =
Do assignment then Scenario=My own way to do
assignment [9]. Each interaction usually starts with an initial
stimulus from a user (also called an actor) and proceeds
through a series of stimuli and responses between the actor,
the system, and possibly other actors, until the interaction
reaches its logical conclusion.
A list of scenario based applications used in this work is
given below:
i. Library Management System
ii. Vehicle Management System
iii. Student Management System
iv. Anti Chess
v. Task Blocks
vi. Ekit

4.1.1 Scenario based Metric Selection

Once the sample applications were selected, the next step
was to collect metric data. As selected sample application
included scenario based applications, a set of major use case

scenarios were considered for each application so as to
provide effective coverage of each application. Dynamic
CBO value was evaluated for each use case scenario in an
application. To test various dimensions of dynamic CBO,
min, max and average values for DCBO was taken for every
class over all scenarios.

4.2 Non-Scenario based Applications

Non–scenario based applications include applications which
do not require any user input. These applications may
include Non-GUI applications which operate from
command line only. This category of applications are
considered in this work to investigate how different an input
based application behave from non-input based application
and does this difference is reflected on the coupling
behaviour of the classes of that application. Non-scenario
based application used for experimentation included the
following:

• JavaCalendarPanel
• SPECjvm2008
• DragonConsole

4.3 Tools Used
4.3.1 DynaMetrics
In order to collect static and dynamic measures a value, a
tool was required which can fetch sample java application
and execute them to provide both static and dynamic metric
values. For this purpose, we chose DynaMetrics [11] as
metric collection tool. DynaMetrics is a metric evaluation
tool that calculates the run time metric values for Java
programs and also relates them to external quality attributes.
It supports only java based applications. DynaMetrics works
over data collected at runtime to evaluate the static and
dynamic metric values. DynaMetrics operates on event log
files created at runtime to get the runtime information about
particular java program. DynaMetrics sits between the JVM
(Java Virtual Machine) and the Java code to intercept and
collect the useful information. The advantage of
DynaMetrics is that it has user friendly GUI. It is compatible
with all the platforms that support Java 2 or higher runtime
environment (Windows 9x/2000/XP/7, UNIX, Linux). It can
evaluate the class-level, object-level and method-level static
and runtime metrics for Java programs. DynaMetrics has
been implemented using Eclipse 3.2 and NetBeans IDE5.5.
All the components except GUI has been implemented in
Eclipse 3.2 while GUI is implemented using Net Beans IDE
5.5.

4.3.2 Statistical and Presentational System Software
(SPSS)

SPSS Statistics [53] is a software package used for statistical
analysis. SPSS is an acronym for Statistical and
Presentational System Software. (Previously it stood for
Statistical Package for Social Scientists). It is now officially
named "IBM SPSS Statistics“. SPSS is a powerful, feature-
rich, statistical analysis program. SPSS Statistics can take
data from almost any type of file and use them to generate
tabulated reports, charts, and plots of distributions and
trends, descriptive statistics, and complex statistical analyses
due to which SPSS is a powerful, feature-rich, statistical
analysis program. It is used in a wide variety of disciplines.

Brij Mohan Goel et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,112-115

© 2015-19, IJARCS All Rights Reserved 114

It is a fairly comprehensive program and a researcher is able
to perform 95%+ of his analyses with it. It encompasses a
wide range of statistical techniques from basic descriptive
statistics through to regression analysis and graphics.
Statistics analysis tasks that can be performed with base
package include Descriptive statistics, Bi-variate statistics,
Prediction for numerical outcomes and prediction for
identifying groups: Cross tabulation, Frequencies,
Descriptive, Explore, and Descriptive Ratio Statistics. The
main advantage of SPSS Statistics is that many important
features are accessible directly via pull-down menus. The
graphical user interface of SPSS included two views: Data
View and Variable View. The Data View is used for
viewing and editing the raw data of a dataset. This takes the
same form as standard spreadsheet software, like Microsoft
Excel, where each column represents a variable and each
row represents a case. The Variable View is for viewing the
metadata for a dataset’s variables. The Variable View for a
dataset looks very similar to its Data View however the
columns (variables) are transposed so that each row contains
the metadata for the specified variable. Different versions of
SPSS are available. Early versions were designed for batch
processing. SPSS statistics 16.0 and later can run on
Windows, Mac and Linux. The GUI is written in java. In
addition, beneath the menus and dialog boxes, SPSS
Statistics uses a command language. Some extended
features of the system can be accessed only via command
syntax. In our analysis, we have used SPSS Statistics 19.0
version base options for descriptive statistics.

5. ANALYSIS TECHNIQUES

5.1 Descriptive Statistics
For each sample application, mean and standard deviation of
static CBO and DCBO is calculated. The fundamental
reason behind determining descriptive statistics was to
determine whether these measures show enough variance to
qualify for further analysis.
5.2 Correlation
To further investigate how the static CBO and DCBO are
related to each other, a correlation study was conducted
using Pearson Product Moment Correlation Test. Pearson’s
coefficient r is used to determine the strength and direction
of correlation. It can take value between -1 to +1 through 0.
A positive value of r indicates that value of one variable
increases with another. The statistical results obtained suffer
from a limitation that they may occur by chance. So, each
statistical result is associated with a significance level called
p-value. p-value is the probability which is used to measure
significance of empirical analysis. The correlation
coefficient is considered statistically significant with p-value
< 0.05.The sample applications for which p-value was found
to be greater than 0.05 were discarded as they do not qualify
for further investigation. All the static and dynamic CBO
metric values were collected at class, method and message
levels for each project. Dynamic CBO for scenario based
application is evaluated by exercising three variants of
DCBO which are defined below:
• DCBOmax: represents maximum value of each class for

all use case scenarios.
• DCBOmin: represents minimum value of each class for

all use case scenarios.

• DCBOavg: represents average value of each class for all
use case scenarios

The correlation among static CBO and DCBO was also
carried out for each project at class, method and message
level where dynamic CBO has been presented using its three
variants DCBOmax, DCBOmin and DCBOavg.

5.3 Principal Component Analysis (PCA)

PCA test was conducted to analyse the covariate structure of
selected and to identify the structural dimensions captured
by these metrics. PCA can tell if all the metrics are likely to
be capturing the same class property. A number of principal
components are generated; however, the number of principal
components to be retained is decided using Kaiser criteria.
The main aim behind conducting this test was to identify
whether all the three representative used for measuring
dynamic CBO were measuring distinct information or are
they simply redundant. The second reason was to affirm that
dynamic coupling metric capture additional information as
compared to their static counterparts.

6. RESULT SUMMARY

From the correlation study of static and dynamic CBO for
sample projects, only the projects which have significance
level<=0.05 have been considered valid. The following
correlation results have been drawn at various levels for all
projects.

At class level

• Two projects exhibit strong correlation between
static CBO and DCBOmax.

• Four projects exhibit moderate correlation between
CBO and DCBOmax.

• One project exhibit weak correlation between static
CBO and DCBOmax.

• Two projects exhibit strong correlation between
static CBO and DCBOmin.

• Two projects exhibit moderate correlation between
CBO and DCBOmin.

• One project exhibit weak correlation between static
CBO and DCBOmin.

• Three projects exhibit strong correlation between
static CBO and DCBOavg.

• Two projects exhibit moderate correlation a
between static CBO and DCBOavg.

• One project exhibit weak correlation between static
CBO and DCBOavg.

At method level

• Two projects exhibit very strong correlation
between static CBO and DCBOmax.

• Two projects exhibit strong correlation between
static CBO and DCBOmax.

• One project exhibit moderate correlation between
static CBO and DCBOmax.

• Two projects exhibit strong correlation between
static CBO and DCBOmin.

Brij Mohan Goel et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,112-115

© 2015-19, IJARCS All Rights Reserved 115

• Two project exhibit moderate correlation between
static CBO and DCBOmin.

• Two projects exhibit very strong correlation
between static CBO and DCBOavg.

• Two projects exhibit strong correlation between
static CBO and DCBOavg.

• One project exhibit moderate correlation between
static CBO and DCBOavg.

At message level

• Two projects exhibit strong correlation between
static CBO and DCBOmax.

• Three projects exhibit moderate correlation
between static CBO and DCBOmax.

• Two projects exhibit strong correlation between
static CBO and DCBOmin.

• Two projects exhibit moderate correlation between
static CBO and DCBOmin.

• One project exhibit weak correlation between static
CBO and DCBOmin.

• Two projects exhibit strong correlation between
static CBO and DCBOavg.

• Two projects exhibit moderate correlation between
static CBO and DCBOavg.

• One project exhibit weak correlation between static
CBO and DCBOavg.

7. CONCLUSIONS

This work focuses on empirically investigating Dynamic
Coupling Between Objects at class, method and message
levels using a set of real world applications. A scenario
based approach in combination with appropriate statistical
techniques has been used in an attempt to capture the
correlation between static and dynamic coupling metrics.
PCA test was conducted to analyse the covariate structure of
selected and to identify the structural dimensions captured
by these metrics. At class level, four projects, at method

level, two projects and at message level three projects
exhibit moderate, strong and moderate correlation
respectively between CBO and DCBOmax. Similarly, other
combinations of correlation is shown by the analysis at the
three levels.

8. REFERENCES

[1] L.L Constantine and E. Yourdon, “Structured Design”,

Prentice-Hall,Englewood Cliffs, New Jersey, USA, 1979.
[2] G. Myers, “Reliable Software Through Composite Design”,

Mason andLipscomb Publishers, New York, USA, 1974.
[3] M. Page-Jones, “The Practical Guide to Structured Systems

Design”, YourdonPress, New York, NY, 1980.
[4] A.J. Offutt, M.J. Harrold, and P. Kolte, “A software metrics

system formodule coupling”,The Journal of Systems and
Software, Vol. 20, No.3, pp.295-308, 1993.

[5] Y. Hassoun, R. Johnson and S. Counsell, “A Dynamic
Runtime CouplingMetric for Meta Level Architectures”, In
Proceedings of Eighth EuromicroWorking Conference on
Software Maintenance and Reengineering(CSMR ’04), pp.
339, 2004.

[6] A. Zaidman and S. Demeyer, “Analyzing large event traces
with the help ofcoupling metrics”, In Proceedings of the 4th
International Workshop on OOReengineering, University
Antwerpen, 2004.

[7] Scenarios:http://undergraduate.csse.uwa.edu.au/units/CITS22
20/lecturenotes/lec02.usecases.pdf

[8] G. Schneider, J.P. Winters, I. Jacobson, “Applying Use Cases:
A practicalGuide”, Pearson Education, pp 272, 2001.

[9] Use case vs Scenario:
http://www.cs.cityu.edu.hk/~wkchan/content/use-casevs-
scenario.

[10] A. Mitchell and J.F. Power, “Runtime Coupling Metrics for
the Analysis ofJava Programs – preliminary results from
SPEC and Grand suites”, Dept. ofComputer Science, National
University of Ireland, Maynooth, Co. Kildare,Ireland,
Technical Report NUIMCS- TR2003-07, 2003.

[11] P. Singh and H. Singh, “DynaMetrics: A Runtime Metric-
Based Analysis Tool for Object-Oriented Software Systems”,
SIGSOFT Software Engineering Notes, Volume 33, Number
6, 2008.

