
��������	�
����	�������������

��� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������
�

© 2010, IJARCS All Rights Reserved 460

ISSN No. 0976-5697

Scheduling in Frame Based Packet Mode for Queued Switches

Mrs. S. A. Ade
Deptt. of Computer Science & Engeering

Sipna’s College of Engg. & Tech.

Amaravati,M.S. , India

shobha_chavan@rediffmail.com

Prof. P. A. Tijare
Deptt. of Computer Science & Engeering

Sipna’s College of Engg. & Tech

Amaravati,M.S. , India

pritishtijare@rediffmail.com

Abstract: Proportional fair bandwidth allocation in packet switches is a fundamental issue for quality of service (QoS) support in IP networks.

Input-queued switches performing packet-mode scheduling deliver all the segments of a packet contiguously from the input port to the output

port, thus greatly simplify the output reassembly and yield performance advantage over switches with cell-mode scheduling under certain

conditions. An important issue of packet-mode scheduling is how to achieve fair bandwidth allocation among flows with different packet sizes.

Most packet scheduling algorithms for input-queued switches operate on fixed-sized packets known as cells. In reality, communication traffic in

many systems such as Internet runs on variable-sized packets. Motivated by potential savings of segmentation and reassembly, there has been

increasing interest in scheduling variable-sized packets in a non preemptive manner known as packet-mode scheduling. The dissertation work

will study frame-based packet-mode scheduling for better scalability. The relation between the frame size and packet sizes will be derived and

the speedup will be analyzed.

Keywords: Cell-mode scheduling, frame-based scheduling, input-queued switch, packet-mode scheduling

I. INTRODUCTION

Input-queued switches are able to overcome head-of-

line (HOL) blocking and achieve high throughput by using

virtual output queueing (VOQ) [1] and efficient scheduling

algorithms. In this case, the buffers and control logic work

at the line speed [2], which enables such architecture to be

scaled up to backbone routers with very high speed, as

realized in Tiny Tera [3], Cisco GSR [4], Lucent GRF [5],

etc. Although Internet Protocol (IP) packets have variable

lengths, switches are usually operated in fixed-size cells

internally. Figure 1 shows a typical architecture, where IP

packets are segmented into cells in the input ports, switched

in the crossbar, and reassembled in the output ports. Cell

delivery in the crossbar is controlled by a scheduler that

calculates a bipartite match from the input ports to the

output ones according to the backlog in the VOQs.

If all the input-output matches are recalculated in each

slot, the algorithm is called cell-mode scheduling. In this

case, cells from different input ports may interleaved in an

output port, thus reassembly modules are needed. On the

other hand, if an input-output match is kept until all the cells

of a packet are delivered, the algorithm is called packet-

mode scheduling. In this case, cells belonging to the same

packet arrive at the output port contiguously, thus the

reassembly is greatly simplified with savings in both

complexity and memory. It has been shown that packet-

mode scheduling achieves 100% throughput and yields

performance advantage over cell-mode scheduling in terms

of packet delay under certain conditions [1][6].

To support quality of service (QoS) in IP networks,

schedulers are required to perform proportional fair

bandwidth allocation among competing flows, which means:

first, a flow with arrival rate less than its reservation is fully

served; second, excess bandwidth (not used up by light load

flows) is allocated among heavy load flows proportionally

to their reserved shares [7]. Fairness mechanism is also

important in best-effort networks where misbehaving flows

should be prevented from grabbing too much bandwidth so

as to protect normal ones. Although fair scheduling has been

intensively investigated in output-queued switches, it is non-

trivial for input-queued architecture to achieve good fairness

and high throughput simultaneously since a bipartite match

conforming the bandwidth regulation may not guarantee

throughput performance, and vice versa [8].

A. IQ packet switches

logical architecture for an IQ packet switch is shown in

Fig. 2. At each input an Input Segmentation Module (ISM)

segments the incoming packet into cells. PLS is the external

packet line speed. Since the ISM operates in store-and-

forward mode, it must be equipped with enough memory to

store a maximum size packet, and the segmentation process

starts only after the complete reception of the packet. The

cells resulting from the segmentation are transferred to the

cell-switch input at a speed (called ILS) equal to the line

speed PLS incremented to account for segmentation

overheads. The capacity of input queues at the cell-switch is

limited to Qmax, hence losses can occur. We assume that the

entire packet is discarded if the input queue of the cell-

switch does not have enough free space to store all the cells

S.A.Ade et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,460-464

© 2010, IJARCS All Rights Reserved 461

deriving from the segmentation of the packet when the first

of these cells hits the queue. This is of course a pessimistic

assumption, but has the advantage of ease of

implementation, and of avoiding the transmission of

incomplete packet fractions through the switch.

The cell-based switching fabric transfers cells from

input to output queues, according to a scheduling algorithm,

as previously discussed. These cells are delivered to the

Output Reassembly Module (ORM) at speed ILS. Here

packets (i.e., IP datagrams) are reassembled. In general,

cells belonging to different packets can be interleaved at the

same output, hence more than one reassembly machine can

be active in the same ORM. However, at most one cell

reaches each ORM in a slot time, hence at most one packet

is completed at each ORM in a slot. Once a packet is

complete, it is logically added to an output packet queue,

called packet FIFO in the figure, from which packets are

sequentially transmitted onto the output line. Note that the

packet FIFO functionality is typically implemented by

imposing a sequential transfer from the suitable ORM to the

output line of all the cells belonging to the same

reassembled packet. No internal speedup is required to

support ISM and ORM, but for compensating internal

overheads. It is possible to further simplify the structure of

the switch, and to improve its performance, by enforcing

additional constraints on the scheduling algorithm. Indeed,

the cells belonging to the same packet are contiguous in the

input queue of the internal cell-switch. It is possible to

modify some well-known scheduling algorithms in such a

way that, once the transfer through the switching fabric of

the first cell of a packet has started towards the

corresponding output port, no cells belonging to other

packets can be transferred to that output. In such a way, cells

belonging to the same packet are kept contiguous also in the

output queue, and the ORM modules are not necessary any

longer (or at most one per output is used). We call this class

of scheduling algorithms packet-mode scheduling. Note that

enforcing packet contiguity is not possible in OQ switches,

where cell interleaving in output queues cannot be avoided.

Figure. 2. Logical architecture for an IQ packet switch

B. OQ packet switches

Fig. 3 shows the logical architecture of an OQ packet

switch. Packets arrive at input ports where they are

segmented by ISM modules, similarly to what happens in IQ

routers. The cells obtained with the segmentation are sent to

the cell-switch at speed ILS, and are immediately transferred

to the output queues of the cell-switch, thanks to a speed-up

equal to N in the switching fabric. Losses may occur at

output queues, whose capacity is limited to N X Qmax for

each queue, since we are assuming the same buffering

capacity for OQ and IQ switches. From the output queues of

the cell-switch, cells are delivered at speed ILS to an ORM

module for reassembly.

Figure. 3. Logical architecture for an OQ packet switch

The discarded cell may be in the output queue, or

already in the ORM. We assume to be unable to identify and

discard the other cells in the output queue: those cells will

be discarded by the ORM module, which has knowledge of

the existence of the packet. This means that cells belonging

to packets that suffered partial losses unnecessarily use

system resources. The IQ architecture has the advantage that

all the cells belonging to the same packet are contiguous in

input queues, where losses occur. In the OQ case, losses

occur in queues where cells of different packets are

interleaved.

II. RELATED WORK

Since switches are operated in cells internally, the time

axis can be divided into fixed-length cell slots, where each

slot allows at most one cell to be delivered from/to an

input/output port. Note that an input may have cells destined

to multiple outputs and an output may be competed by

multiple inputs, a scheduler is needed to find a bipartite

match that establishes one-to-one match pairs from inputs to

outputs. A cell-mode scheduler releases all the match pairs

and performs recalculation in each slot. This type of

scheduling has been intensively researched in literature such

as iSLIP [9], oldest cell first (OCF), longest queue first

(LQF) [10], parallel iterative matching (PIM) [11], and dual

round-robin matching (DRRM) [1]. Since cells from

different packets may be interleaved in output ports, cell-

mode scheduling introduces additional complexity of packet

reassembly in output ports when it is applied to packet

switches. Packet-mode schedulers differ from cell-mode

ones in that a match pair is kept unchanged until all the cells

belonging to the same packet are delivered. In each slot,

only the idle unmatched ports and those that just delivered a

complete packet in the previous slot are taken for match

recalculation [1]. This mechanism guarantees that cells

belonging to a single packet arrive at the destination output

port contiguously, thus greatly facilitates output assembly.

A. Cell-Mode and Packet-Mode Scheduling

Since switches are operated in cells internally, the time

axis can be divided into fixed-length cell slots, where each

slot allows at most one cell to be delivered from/to an

input/output port. Note that an input may have cells destined

to multiple outputs and an output may be competed by

multiple inputs, a scheduler is needed to find a bipartite

match that establishes one-to-one match pairs from inputs to

outputs.

S.A.Ade et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,460-464

© 2010, IJARCS All Rights Reserved 462

A cell-mode scheduler releases all the match pairs and

performs recalculation in each slot. This type of scheduling

has been intensively researched in literature, such as iSLIP,

oldest cell first (OCF), longest queue first (LQF), parallel

iterative matching (PIM), and dual round-robin matching

(DRRM). Since cells from different packets may be

interleaved in output ports, cell-mode scheduling introduces

additional complexity of packet reassembly in output ports

when it is applied to packet switches.

Packet-mode schedulers differ from cell-mode ones in

that a match pair is kept unchanged until all the cells

belonging to the same packet are delivered. In each slot,

only the idle unmatched ports and those that just delivered a

complete packet in the previous slot are taken for match

recalculation. This mechanism guarantees that cells

belonging to a single packet arrive at the destination output

port contiguously, thus greatly facilitates output assembly. It

has been shown that this type of scheduling achieves 100%

throughput and yields low average delay. The properties of

low complexity and good performance make packet-mode

scheduling a strong candidate for high speed IP routers.

B. Fair Scheduling in Input-Queued Switches

Existing research on fair scheduling mainly focuses on

output-queued switches, where only the output ports

experience contention. Several algorithms have been

proposed, such as generalized processor sharing (GPS),

deficit round-robin (DRR) and elastic round-robin (ERR).

Input- queued switches differ from output-queued ones in

that contention takes place at both input and output ports,

thus makes it difficult to achieve high throughput and good

fairness simultaneously. Most existing algorithms are

designed for cell-mode schedulers. Weighted PIM (WPIM)

employs weight-based masks in the matching process and

guarantees the reserved bandwidth of each flow. However,

the excess bandwidths are allocated equally (rather than

proportionally) among the competing flows. Based on GPS,

iterative fair scheduling (iFS) derives a virtual time stamp

for each arriving cell and calculates bipartite match

according to the time stamps of the HOL packets in the

VOQs. It is well know that GPS-based algorithms suffer

from the complexity of time stamp calculation and sorting,

which makes iFS unsuitable for high speed switches.

III. ANALYSIS OF PROBLEM

Datagram networks have long suffered from

performance degradation in the presence of congestion

[GerBO]. The rapid growth, in both use and size, of

computer networks has sparked a renewed interest in

methods of congestion control [DEC87abcd,Jac88a, Man89,

Nag871. These methods have two points of implementation.

The first is at the source, where flow control algorithms vary

the rate at which the source sends packets, Of course, flow

control algorithms are designed primarily to ensure the

presence of free buffers at the destination host, but we are

more concerned with their role in limiting the overall

network traffic. Queuing algorithms can be thought of as

allocating three nearly independent quantities: bandwidth

(which packets get transmitted), promptness (when do those

packets get transmitted), and buffer space (which packets

are discarded by the gateway).Currently, the most common

queuing algorithm is first-come-first-serve (FCFS).

This paper investigates the cost of packet-mode

scheduling for the combined input output queued (CIOQ)

switch architecture. We devise frame-based schedulers that

allow packet-mode CIOQ switch with small speedup to

mimic an ideal output-queued switch, with bounded relative

queuing delay. The schedulers are pipelined and are based

on matrix decomposition. Our schedulers demonstrate a

trade-off between the switch speedup and the relative

queuing delay incurred while mimicking an output-queued

switch. When the switch is allowed to incur high relative

queuing delay, a speedup arbitrarily close to 2 suffices to

mimic an ideal output-queued switch. This implies that

packet mode scheduling does not require higher speedup

than a cell-based scheduler.

IV. PROPOSED WORK

A. Packet-Mode Scheduling

This algorithm considers bandwidth allocation for coarse

grain flows and leaves fine grain control to line cards before

packets are segmented and put into VOQs. The concepts of

flow and proportional fairness in this algorithm are defined

in the following:

Definition 1 : In an N X N switch, flow Fi;j is defined to be

the sequence of packets from input i to output j, where i; j =

0, 1, …., N-1.

Definition 2 : Denote the arrival rate of Fi;j with ai;j , let bi;j

and b*i;j stand for the reserved and allocated bandwidth of

Fi;j , respectively, the proportional fairness factor of the

scheduling algorithm is defined as

where

Since the aggregated reservation of a link never exceeds

its capacity, f = 0 indicates that the light load flows (ai;j <=

b*i;j) are fully served and the excess bandwidth (if non-zero)

is allocated among the heavy load ones (ai;j > b*i;j)

proportionally to their reservations.

Algorithm is based on three steps: request � grant �

accept, where fairness mechanism is introduced in the grant

and the accept steps to control the bipartite matching. The

grant arbiter Gj in output j and the accept arbiter Ai in input i

have the same structure and maintain pointers to indicate

port index from 0 to N – 1.

request : Each unmatched input i sends a request to

every output j if the queue of Fi;j is non-empty;

grant : If output j is unmatched, Gj is activated to select an

input from the requests as the grant. If the grant is accepted

in the next step, pointer gj is increased one location beyond

the selected input.

accept : Upon the grants to input i, Ai is used to select

an output to generate a match pair, and ai is increased one

location beyond the accepted output.

Once a match pair is established, it will be kept

unchanged until a complete packet is delivered. In iterative

algorithm, the three steps can be repeated multiple times to

improve throughput.

S.A.Ade et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,460-464

© 2010, IJARCS All Rights Reserved 463

B. Frame Based Packet Mode Scheduling

Consider an N X N input-queued non blocking switch.

All inputs and outputs are assumed to run at the same speed.

The time is divided into slots and each slot allows a basic

data unit (cell) to be transferred from an input port to an

output port. The line speed of each port is thus one cell per

time slot. A packet may consist of l cells that need l

consecutive slots to complete the transmission. If we use a

speedup s, then up to s cells can be transferred from an input

port to an output port in one slot. During each slot, the

scheduler sets up a switching configuration that connects

each input port to exactly one output port and vice versa.

A frame consists of f time slots. Slots in each frame are

numbered from 0 to f - 1. Slot k covers time interval (tk;

tk+1). A sequence of consecutive slots k, k+1, …….,m-1, m,

is denoted by slots [k, m]. We associate a triple (i, j, l) to

each packet if it consists of l cells to be transferred from

input port i to output port j. Note that multiple packets can

have the same triple (i, j, l). Let S be a set of packets to be

scheduled, introduce the following notations.

Let L be the set of packet sizes that occur in S. For each

 define

Definition 1. Let S be a set of packets. S is called

schedulable under the frame-based packet mode if a

schedule exists such that every packet can be transmitted

within a frame non preemptively without contention.

Definition 2. The schedulability problem under the frame-

based packet mode is to determine whether a given packet

set S is schedulable under the frame-based packet mode.

Definition 3. Given a packet set S, the minimum finishing

time is the minimum number of time slots needed to

transmit all packets in S non preemptively without

contention.

Finding the minimum finishing time for a packet set S

under packet mode is an NP-complete problem when N >=

3. Apparently, finding the minimum finishing time is

equivalent to finding a minimum frame size such that set S

is schedulable within the frame. Therefore, the

schedulability problem under the frame-based packet mode

will also be NP-complete if the frame size is variable.

Hence, we assume that a fixed frame size be used in the

study of frame-based packet-mode scheduling problem.

Given a packet set S, the following condition is called

admissible condition that is necessary for S to be

schedulable in a frame of length f

This is because the total number of cells arriving at any

input port i (or destined to any output port j) cannot be

larger than the number f of time slots available in the frame.

As a special case, where all packets are cells, the

schedulability problem under the packet mode becomes the

cell-mode scheduling problem.

C. Speedup for frame –based P acket –mode

scheduling

As can be seen from Fig. 1, quite different from cell-

mode scheduling, the packet-mode scheduling may not

produce a feasible schedule even if the traffic satisfies the

admissible condition . Moreover, even a feasible schedule

exists, because of the NP-completeness of the general

scheduling problem, we cannot find it efficiently. Therefore,

using a speed up is a practical and efficient approach. In this

section , we show that if the packet set satisfies the

admission condition , then all packets can be transmitted

within a frame if a speedup of 2 is used .Let S be a packet

set that satisfies the admissible condition . We first show a

scheduling algorithm without using speedup that can

schedule all packets in S into2f time slots. This implies that

a speedup of 2 guarantees the schedulability.

In the algorithm, we associate N output ports with

arrayR[j](1, . . .,N), where R[j](1�j�N), holds an integer

between 0 and f - 1 showing the next available slot for

output port j. Initially, R[j](1�j�N). After we schedule a

packet (i,j,l) at slot k, then R[j]=k+l. In addition, we use f

sets, P0, P1, . . . , Pf-1, to record which input ports will

become available at slot 0, 1, . . . , f - 1, respectively.

Obviously, these sets are disjoint. Initially, P0 = {1, 2, . .

.,N} and all other sets are empty. The following is a pseudo

code of the algorithm.

Algorithm:-

Packet-Mode Reservation-Based Scheduling (S, R, P)

/* S is a given set of packets */

Step 1 /*Initialization */

Set R[i]=0,(1�j�N)

Set P0 ={1,2----N}

Set Pk = ø , (1�k� f-1)

Step 2 for k = 0 to f - 1

{do {for each i � Pk}

do { for each j(1�j�N)

do{check an unscheduled packet (i; j; l)

in input port i

if R[j] �k

then { schedule a packet (i; j; l) in

slots [k,l+k-1]

R[j] = k+l

Pk= Pk-{i}

Pk+1= Pk+1 U{i}

}

}

}

}

Pk+1 = Pk+1 U Pk /+An input available at slot

k will be also available at

slot k þ+1. */

}

Step 3 End.

The above algorithm guarantees that at each time slot, the

transmitting (input, output) pairs form a maximal matching.

This is because for any unscheduled packet with triple (i,j,l)

at time slot k, the ports i and j cannot be both idle.

Otherwise, this packet would have been scheduled at or

before slot k because input port i belongs to set Pk and R[j]

� k. Since there are at most (f-l) cells contained in other

packets in either input i or output j, from the admissible

condition, this packet will be delayed by at most2(f-l) slots.

The schedule length of above algorithm is hence at most 2f-

S.A.Ade et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,460-464

© 2010, IJARCS All Rights Reserved 464

1. Since 2f-1/j<2, a speedup of 2 is sufficient to guarantee to

transmit all packets within a frame of size f.

V. CONCLUSION

In this paper, we have studied the packet-mode

scheduling for an input-queued switch in the frame-based

context. It is shown that different from cell-mode

scheduling, the admissible condition is only necessary but

not sufficient

to guarantee the schedulability for packet-mode scheduling.

However, this condition becomes sufficient if a speedup of 2

is used. We also investigated how the nonpreemption in

packet -mode scheduling affects the complexity of the

problem. Unlike cell-mode scheduling, the schedulability

can be determined efficiently only for limited cases in

packet-mode scheduling.

VI. REFERENCES

[1] Jianyu Lou and Xiaojun Shen, Senior Member, IEEE,

“Frame-Based Packet-Mode Scheduling for Input-

Queued Switches”, IEEE Trans On Computers, Vol. 58,

No. 7, Jul 2009.

[2] V. Tabatabaee and L. Tassiulas, “MNCM a new class of

e±cient scheduling algorithms for input-buffered

switches with no speedup," Proc. IEEE INFOCOM'03,

pp.1406-1413, April 2003.

[3] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick,

and M. Horowitz, “Tiny Tera: A packet switch core,"

IEEE Micro, vol.17, no.1, pp.27-40, Feb. 1997.

[4] Cisco, \Cisco 12000 Gigabit switch router." [Online]

http://www.cisco.com.

[5] Lucent, \GRF-MultiGigabit routers, product overview."

[Online] http://www.lucent.com.

[6] M. Rosenblum, M. Goemans, and V. Tarokh,

“Universal bounds on bu®er size for packetizing °uid

policies in input queued, crossbar switches," Proc. IEEE

INFOCOM'04, March 2004.

[7] A. Demers, S. Keshav, and S. Shenker, “Analysis and

simulation of a fair queueing algorithm," J. of

Internetworking Research and Experience, vol.1, no.1,

pp.3-26, June 1990.

[8] N. Ni and L.N. Bhuyan, “Fair scheduling and bu®er

management in internet routers," Proc. IEEE

INFOCOM'02, pp.1141-1150, June 2002.

[9] H.J. Chao, “Saturn: a Terabit packet switch using dual

round-robin," IEEE Commun. Mag., vol.38, no.13,

pp.78-84, Dec. 2000.

[10] Y. Li, S. Panwar, and H.J. Chao, “On the performance

of a dual round-robin switch," Proc. IEEE

INFOCOM'01, pp.1688-1697, April 2001.

[11] G. Nong and M. Hamdi, “Burst-based scheduling

algorithms for non-blocking atm switches with multiple

input queues," IEEE Commun. Lett., vol.4, no.6,

pp.202-204, June 2000.

[12] S.S. Kanhere, H. Sethu, and A.B. Parekh, “Fair and

e±cient packet scheduling using elastic round-robin,"

IEEE Trans. Parallel Distrib. Syst., vol.13, no.3,

pp.324-336, March 2002.

[13] A. Kam and K. Siu, “Linear-Complexity Algorithms for

QoSSupport in Input-Queued Switches with No

Speedup,” IEEE J.Selected Areas in Comm., vol. 17,

no. 6, pp. 1040-1056, Jun. 1999.

[14] T. Gonzalez and S. Shani, “Open Shop Scheduling to

Mininize Finish Time,” J. ACM, vol. 23, pp. 665-679,

1976.

