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Abstract: The increasing complexity of present day equipment has brought into focus the important aspects of reliability, known as 
maintainability and availability. When any system fails, the ease with which it is brought back into operation reflects, in some measure, the 
maintainability character of the equipment. Similarly, if the system is capable of being repaired easily or if it has high maintainability factor, 
then the availability will also be high. In this paper we will touch upon various factors leading to the calculation of MTSF, Availability, Busy 
period of the repairman in repairing the failed units and expected profit of a system which is laid in semi-up state. A system is defined into a 
semi-up state wherein, some units of the equipment are in failed state yet the equipment is delivering its normal work but the system cannot be 
put in working condition for a longer period to avoid the complete failure. In other words, we can classify such systems into systems working 
with failures till the immediate repairing facility arrives. Such systems may be useful in remote areas where, arduous type of work is done on 
robust machines and repair facility arrives late. In recent years many papers on reliability have been written in order to predict, estimate or 
optimize the probability of survival, the mean life or more generally the life distribution of components or systems. Earlier, Murari et al [7] have 
done reliability analysis taking units in two different modes. Rander et-al [4] has evaluated the cost analysis of two dissimilar cold standby 
systems with preventive maintenance and replacement of standby units. In the past, Arora et-al [2] has done reliability analysis of two unit 
standby redundant system with constrained repair time. Gupta et-al [6] has worked on a cold standby system with arrival time of server and 
correlated failures and repairs. A pioneer work in this field was done by Gopalan [1] and Osaki [3] by performing analysis of warm standby 
system and parallel system with bivariate exponential life respectively. Earlier Pathak et al [8& 9] studied reliability parameters of a main unit 
with its supporting units and also compared the results with two different distributions. In all the papers authors have worked with only two 
kinds of states i.e. up state and down state. However, there are times and conditions wherein the states are neither up or completely down mode. 
We can refer such states in sleeping mode or more in reliability terms they can be stated in semi-up mode. In many papers, the working system is 
often assumed to be down when the main unit is not operating. In fact, it is not so. There is need to conceptualize systems in Industries that are 
complex in nature but they yield such results which are more suitable to industries in order to meet the ever increasing demands of society. In 
this paper an attempt has been made by authors by incorporating the concept of semi-up mode and tried to obtain the reliability parameters of 
working system using regenerative point technique.  
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1. LITERATURE REVIEW 

 
Murari, K and Muruthachalan, C[7] presents two different 
models of two unit system, where the system operates under 
different conditions of working and the two units are 
interlinked. In model I, the system works for a period of 
time with two units in series, then one unit is switched off 
leaving other to continue alone. In model II, the first period 
consists of one unit working and other in standby mode. 
These periods alternate repeated. The reliability of the 
system for each model is examined. 

 
Rander, M.C., Kumar Ashok and Suresh K [4] evaluated 
cost analysis of two dissimilar cold standby systems with 
preventive maintenance and replacement of standby units 
under the assumption that the standby unit being of 
substandard quality and is not repairable. It is to be replaced 
on failure. In this paper, the failure time distributions are 
negative exponential while all the other distributions are 
general. 

 
Arora , J. R. [2] This work considers a two-unit warm 
standby redundant system with repair. The The repair of a 
failed unit is constrained as follows : Associated with each 
failure of a unit, a random variable known as maximum 
repair time (MRT).  If the repair of the failed unit is not 
completed within the MRT, the unit is rejected. Two types 

of failure situations for the system are considered. (1) no 
allowed down time and (2) some allowed down time. The 
expression for cumulative distribution function of time to 
system failure (TSF) is derived using markov renewal 
processes. 
 
Gupta R, Tyagi, P. K. and Goel L. R. [6] Presents an 
analysis of two unit cold standby system with random 
arrival time of a server. The failure and repair time of each 
unit is assumed to be correlated and their joint density 
function is taken to be bivariate exponential. Using 
regenerative point technique various reliability 
characteristics of the system ave been obtained. 
 
Gopalan, M.N. [1] discusses the probabilistic analysis with 
n-unit system keeping (n-1) units in warm standby 
configuration w ith a single repair facility. The failure time 
of the operating unit and of a standby unit are assumed to be 
exponentially distributed. Intially, a unit is switched on and 
other units are kept as warm standby. The system break 
down when the last operating unit fails. In this paper, the 
laplace-transform technique is used to solve integral 
equations. 
 
Osaki [3] discusses a two unit parallel redundant system 
with a single repair facility in which the life time of two 
units obey a bivariate exponential distribution and the repair 
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time of the failed unit obeys an arbitrary distribution. 
Applying extended Markov renewal process, the quantities 
of interests in reliability theory are obtained. 
 
Chandrasekar, P. and Nataraja R. [6] proposed to obtain a 
100 percent limit for steady state availability of a two unit 
standby system, when the failure rate of an online unit is 
constant and the repair time of the failed unit has a 
Erlangian distribution. 
 
Pathak, V.K. [8] & [9] considered a two unit system with 
single repair facility. If the working unit fails, it is 
immediately taken over by a standby unit and the repair on 
the failed unit is started immediately. Reliability analysis is 
done by calculating various characteristics such as mean 
time to system failure, availability and busy period of 
repairman using regenerative point technique. Comparative 
study is also done taking two types of distributions viz. 
Weibull and Erlangian. 

 
2. SYSTEM DESCRIPTION ABOUT THE MODEL 
 
The system consists of four units namely one main unit M 
and two types of associate units A & B. Unit A has one 
stand by unit with it. Here the main unit M dependent upon 
associate units A & B and the system is operable when the 
main unit and both associate units are in operable and the 
system is semi operable when the main unit is failed and 
both associate unit are in operable. associate units A & B  
are employed to rotate main unit M. As soon as a job 
arrives, all the units work with load. It is assumed that only 
one job is taken for processing at a time. There is a single 
repairman who repairs the failed units on first come first 
served basis. Using regenerative point technique several 
system characteristics such as transition probabilities, mean 
sojourn times, availability and busy period of the repairman 
are evaluated. In the end the expected profit is also 
calculated. 
 
3. ASSUMPTIONS USED IN THE MODEL 
 
a. The system consists of one main unit and two associate 
units with one of associate units has standby partner. 
b. The main unit M works with the help of associate unit A 
and B. 
c. There is a single repairman which repairs the failed units 
on priority basis. 
d. After random period of time the whole system goes to 
preventive maintenance. 
e. All units work as new after repair. 
f. The failure rates of all the units are taken to be 

exponential whereas the repair time distributions are 
arbitrary. 

g. Switching devices are perfect and instantaneous. 
 
4. SYMBOLS AND NOTATIONS  
 

=jip Transition probabilities from ji StoS  

=iµ Mean sojourn time at time t                        

0E =State of the system at epoch t=0  
 E=set of regenerative states   

=)(tq ji Probability density function of transition time 

from ji StoS  

=)(tQ ji Cumulative distribution function of transition 

time from ji StoS  

=)(tiπ  Cdf of time to system failure when starting from 

state ESE i ∈=0  

=)(tiµ Mean Sojourn time in the state ESE i ∈=0  

=)(tBi Repairman is busy in the repair at time t /

ESE i ∈=0  

4321 /// rrrr =Constant repair rate of Main unit M 
/associate Unit A/ associate Unit B  

γβα // =Failure rate of Main unit M / associate Unit A/ 
associate Unit B  

321 // ggg =Probability density function of repair time 
of Main unit M /associate Unit A/ associate Unit B  

321 // GGG =Cumulative distribution function of repair 
time of Main unit M /associate Unit A/ associate Unit B  
a(t) = Probability density function of preventive 
maintenance . 
b(t) = Probability density function of preventive 
maintenance  completion time. 

)(tA = Cumulative distribution functions of preventive 
maintenance. 

)(tB = Cumulative distribution functions of preventive 
maintenance completion time. 
       = Symbol for Laplace -stieltjes transforms.       
         

= Symbol for Laplace-convolution. 
 
 
5. SYMBOLS USED FOR STATES OF THE SYSTEM 
 

wrg MMM //0 -- Main unit ‘M’ under operation/ in good 
and non-operative mode / waiting for repair.                             

wrgsr AAAAA ////0 -- Associate Unit ‘A’ under 
operation/repair/standby/ good and non-operative mode/      
   waiting for repair. 

gr BBB //0 -- Associate Unit ‘B’ under 
operation/repair/good and non-operative mode 
P.M. -- System under preventive maintenance. 
S.D. -- System in shut down mode. 
Up states: 

);,,,();,,,( 0020000 BAAMSBAAMS ors ==  
Semi Up states: 

),,,();,,,( 04001 BAAMSBAAMS orwrsr ==  
Downstates:

);,,,();,,,( 53 rsgwrrsgg BAAMSBAAMS ==  
 

);,,,();,,,( 76 rgrggwrrg BAAMSBAAMS ==  

  .).(.);.( 78 MPSDSS ==  

s 

c 

90 SS −
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6. TRANSITION PROBABILITIES 
 
Simple probabilistic considerations yield the following non-zero transition probabilities:  

1. ∫ −=
t

tx dttAetQ
0

01 )()( 1α               2.
 

∫ −=
t

tx dttAetQ
0

02 )()( 1β            

3. ∫ −=
t

tx dttAetQ
0

03 )()( 1γ
    

4. ∫ +−=
t

t dttgetQ
0

1
)(

10 )()( γβ

 

5.
 

∫ +−=
t

t dttGetQ
0

1
)(

14 )()( γββ
     

  
 
6.

 
∫ +−=
t

t dttGetQ
0

1
)(

15 )()( γβγ  

7. ∫ −=
t

tx dttgetQ
0

220 )()( 1                 8. ∫ −=
t

tx dttGetQ
0

224 )()( 1α   

9. ∫ −=
t

tx dttGetQ
0

226 )()( 1β                10. ∫ −=
t

tx dttGetQ
0

227 )()( 1γ   

11. ∫=
t

dttgtQ
0

330 )()(      12. ∫ +−=
t

t dttgetQ
0

2
)(

41 )()( γβ  

13. ∫ +−+=
t

t dttGetQ
0

2
)(

48 )()()( γβγβ   14. ∫=
t

dttgtQ
0

351 )()(  

15. ∫=
t

dttgtQ
0

262 )()(      16. ∫=
t

dttgtQ
0

372 )()(  

17. ∫=
t

dttgtQ
0

480 )()(     18. ∫=
t

dttbtQ
0

90 )()(  

19. ∫ −=
t

tx dtetatQ
0

09
1)()(      

 Where γβα ++=1x   , Now letting ∞→t  ,  we get ijijt
ptQLim =

∞→
)(                               

20 . )](1[)( 1
*

10
01

1 xa
x

dttAep tx −== ∫
∞

− αα  ,   21. ( ) ( )]1[)( 1
*

10
02

1 xa
x

dttAep tx −== ∫
∞

− ββ , 

  

22. ( )]1[)( 1
*

10
03

1 xa
x

dttAep tx −== ∫
∞

− γγ ,                 23.
 

)()( *
1

0
1

)(
10 γβγβ +== ∫

∞
+− gdttgep t    

24. ( ) ( )]1[)( *
1

0
1

)(
14 γβ

γβ
ββ γβ +−
+

== ∫
∞

+− gdttGep t , 

25.
 

( ) ( )]1[)( *
1

0
1

)(
15 γβ

γβ
γγ γβ +−
+

== ∫
∞

+− gdttGep t ,  

26.
 

)()( 1
*

2
0

220
1 xgdttgep tx == ∫

∞
−

 
,               27.

 
)](1[)( 1

*
2

10

224
1 xg

x
dttGep tx −== ∫

∞
− αα

  

28.
 

)](1[)( 1
*

2
10

226
1 xg

x
dttGep tx −== ∫

∞
− ββ ,

             
29.

 
)](1[)( 1

*
2

10

227
1 xg

x
dttGep tx −== ∫

∞
− γγ

 

30.
 

1)(
0

330 == ∫
∞

dttgp
 
,                31.

 
)()( *

2
0

2
)(

41 γβγβ +== ∫
∞

+− gdttgep t
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32.
 

)(1)()( *
2

0

2
)(

48 γβγβ γβ +−=+= ∫
∞

+− gdttGep t ,          33.
 

1)(
0

351 == ∫
∞

dttgp
 
        

34.
 

1)(
0

262 == ∫
∞

dttgp  ,            35. 1)(
0

372 == ∫
∞

dttgp  

36 . 1)()(
0

480 == ∫
∞

dttgtp ,  
                        

37.
 

1)()(
0

90 == ∫
∞

dttbtp  

38. 1908072625130 ====== pppppp             [6.1-6.38] 

It is easy to see that  
109030201 =+++ pppp  , 1151410 =++ ppp  ,   127262420 =+++ pppp     ,   14841 =+ pp         

                           [6.39-6.42] 
And mean sojourn time are given by                                                                     

43. )](1[
)(

1 *
0 γβα

γβα
µ ++−

++
= a ,   44. )](1[1 *

11 γβ
γβ

µ +−
+

= g ,   

45. )](1[1 *
22 γβα

γβα
µ ++−

++
= g ,            46. dttG )(

0
33 ∫

∞

=µ   

47. )](1[1 *
24 γβ

γβ
µ +−

+
= g ,                48. dttG )(

0
35 ∫

∞

=µ   

49.
 

dttG )(
0

26 ∫
∞

=µ ,
      

50. dttG )(
0

37 ∫
∞

=µ  

51.
 

dttG )(
0

48 ∫
∞

=µ ,             52.
 

dttB )(
0

9 ∫
∞

=µ
    

                           [6.43-6.52]
 

We note that the Laplace-stieltjes transform of )(tQij  is equal to Laplace transform of )(tqij  

 i.e.   )()}({)()(~ *

0

sqtQLdttQesQ ijijij
st

ij === ∫
∞

−                                                            

[6.53] 

54. )](1[)()(~ *

0

)(
01 γβα

γβα
αα γβα +++−

+++
== ∫

∞
+++− sa

s
dttAesQ ts

 

55. )](1[)()(~ *

0

)(
02 γβα

γβα
ββ γβα +++−

+++
== ∫

∞
+++− sa

s
dttAesQ ts  

56. )](1[)()(~ *

0

)(
03 γβα

γβα
γγ γβα +++−

+++
== ∫

∞
+++− sa

s
dttAesQ ts  

57. )()()(~ *

0

)(
09 γβαγβα +++== ∫

∞
+++− sadttaesQ ts  

58. )()()(~ *
1

0
1

)(
10 γβγβ ++== ∫

∞
+−− sgdttgeesQ tst

 

59. )](1[)()(~ *
1

0
1

)(
14 γβ

γβ
ββ γβ ++−
++

== ∫
∞

+−− sg
s

dttGeesQ tst  

60.
 

)](1[)()(~ *
1

0
1

)(
15 γβ

γβ
γγ γβ ++−
++

== ∫
∞

+−− sg
s

dttGeesQ tst   
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61. )()()(~ *
2

0
2

)(
20 γβαγβα +++== ∫

∞
+++− sgdttgesQ ts  

62. )](1[)()(~ *
2

0
2

)(
24 γβα

γβα
αα γβα +++−

+++
== ∫

∞
+++− sg

s
dttGesQ ts

 

63. )](1[)()(~ *
2

0
2

)(
26 γβα

γβα
ββ γβα +++−

+++
== ∫

∞
+++− sg

s
dttGesQ ts

 

64. )](1[)()(~ *
2

0
2

)(
27 γβα

γβα
γγ γβα +++−

+++
== ∫

∞
+++− sg

s
dttGesQ ts

 

65. )()()(~ *
3

0
330 sgdttgesQ st == ∫

∞
−  

66.
 

)()()(~ *
2

0
2

)(
41 γβγβ ++== ∫

∞
++− sgdttgesQ ts

 

67. )](1[
)(

)()()()(~ *
2

0
2

)(
46 γβ

γβ
γβγβ γβ ++−
++

+
=+= ∫

∞
++− sg

s
dttGesQ ts  

68. )()()(~ *
3

0
351 sgdttgesQ st == ∫

∞
−

 

69. )()()(~ *
2

0
262 sgdttgesQ st == ∫

∞
−

 

70. )()()(~ *
3

0
372 sgdttgesQ st == ∫

∞
−  

71. )()()(~ *
4

0
480 sgdttgsQ == ∫

∞

 

72. )()()(~ *

0
90 sbdttbesQ st == ∫

∞
−

                           [6.54-6.72]
 

We define jim  as follows:- 

)0()](~[ /
0 jisjiji QsQ

ds
dm −=−= =                     [6.73] 

 
It can to show that                                                                                      

448412272624201151410009030201 ;;; µµµµ =+=+++=++=+++ mmmmmmmmmmmmm                  

           [6.74-6.77] 
                 
7. MEAN TIME TO SYSTEM FAILURE 
 
 Time to system failure can be regarded as the first passage time to the failed state. To obtain it we regard the down state 
as absorbing. Using the argument as for the regenerative process, we obtain the following recursive relations. 

)()()()()()()( 09032021010 tQtQttQttQt +++= πππ  

)()()()()()( 154140101 tQttQttQt ++= πππ   

)()()()()()()( 27264240202 tQtQttQttQt +++= πππ  

)()()()( 481414 tQttQt += ππ                                                          [7.1-7.4] 

s s 

s 

s

   

s s 

s 
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Taking Laplace -stieltjes transform of above equations and writing in matrix form. 

We get                  

�

�
1 01

~Q− 02
~Q− 0

10
~Q− 1 0 14

~Q−

20
~Q− 0 1 24

~Q−

0 41
~Q− 0 1

�

�

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0π

1π

2π

4π ⎦
⎥
⎥
⎥
⎥
⎥
⎤

     =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0903

~~ QQ +

15
~Q

2726
~~ QQ +

48
~Q ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 =)(1 sD
�

�
1 01

~Q− 02
~Q− 0

10
~Q− 1 0 14

~Q−

20
~Q− 0 1 24

~Q−

0 41
~Q− 0 1

�

�

 

41142002244110022002100141141
~~~~~~~~~~~~~~1)( QQQQQQQQQQQQQQsD +−−−−=       

          [7.5] 

And =)(1 sN
  
�

�

�
0903

~~ QQ + 01
~Q− 02

~Q− 0

15
~Q 1 0 14

~Q−

2726
~~ QQ + 0 1 24

~Q−

48
~Q 41

~Q− 0 1
�

�

�

 

)}~~(~~~~~~~~~{~
)~~~(~)~~1)(~~()(

272641142726482441241502

48141501411409031

QQQQQQQQQQQQ

QQQQQQQQsN

++−−−−

++−+=

                 [7.6]  

Now letting 0→s  we get

 
41142002412410021414200210011 1)0( ppppppppppppppD −−−−−=                       [7.7] 

The mean time to system failure when the system starts from the state 0S  is given by  

MTSF=
)0(

)0()0()](~[)(
1

/
1

/
1

00 D
NDs

ds
dTE s

−
=−= =π                                                            [7.8] 

To obtain the numerator of the above equation, we collect the coefficients of relevant of jim in )0()0( /
1

/
1 ND − . 

Coeff. of ( 09030201 mmmm === ) = 41141 pp−  
Coeff. of ( 151410 mmm == ) = 41240201 pppp +  

Coeff. of ( 20m = 24m = 26m = 27m ) = )1( 141402 ppp −  

Coeff. of ( 41m = 48m ) = 24021401 pppp +              [7.9-7.12] 
From equation [7.8] 

MTSF=
)0(

)0()0()](~[)(
1

/
1

/
1

00 D
NDs

ds
dTE s

−
=−= =π

 411420024124010220021001

140124024141402241240201114140

1
)()1()()1(

pppppppppppp
ppppppppppppp

−−−−
++−+++−

=
µµµµ

   
                      [7.13]    
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8. AVAILABILITY ANALYSIS 
 
             Let )4,2,1,0)(( =itMi denote the probability that system is initially in regenerative state ESi ∈  is up at time t 
without passing through any other regenerative state or returning to itself through one or more non regenerative states .i.e. either it 
continues to remain in regenerative iS or a non regenerative state including itself . By probabilistic arguments, we have the 
following recursive relations 

)()(),()(),()(),()( 4
)(

42
)(

21
)(

1
)(

0 tGetMtGetMtGetMtAetM tttt γβγβαγβγβα +−++−+−++− ====       
                 [8.1-8.4] 
Recursive relations giving point wise availability )(tAi given as follows: 

∑
=

+=
9,3,2,1

000 )()()()(
i

ii tAtqtMtA     ;   )()()()( 1
5.4,0

11 tAtqtMtA ii
i
∑
=

+= ;    

∑
=

+=
7,6,4,0

222 )()()()(
i

ii tAtqtMtA        ;   )()()( 0303 tAtqtA =  ; 

∑
=

+=
8,1

444 )()()()(
i

ii tAtqtMtA        ;   )()()( 1515 tAtqtA =  ; 

)()()( 2626 tAtqtA =                        ;   )()()( 2727 tAtqtA = ;    

)()()( 0808 tAtqtA =                        ;   )()()( 0909 tAtqtA = ;    

                                                                                                 [8.5-8.14] 

Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get 
/*

4
*

2
*

1
*

0
/*

9
*

8
*

7
*

6
*

5
*

4
*

3
*

2
*

1
*

01010 ]0,0,0,0,0,,0,,,[],,,,,,,,,[ MMMMAAAAAAAAAAq X =            [8.15] 
 

Where 1010 Xq = 

�

�

�

�

�

�
1 *

01q− *
02q− *

03q− 0 0 0 0 0 *
09q−

*
10q− 1 0 0 *

14q− *
15q− 0 0 0 0

*
20q− 0 1 0 *

24q− 0 *
26q− *

27q− 0 0

*
30q− 0 0 1 0 0 0 0 0 0

0 *
41q− 0 0 1 0 0 0 *

48q− 0

0 *
51q− 0 0 0 1 0 0 0 0

0 0 *
62q− 0 0 0 1 0 0 0

0 0 *
72q− 0 0 0 0 1 0 0

*
80q− 0 0 0 0 0 0 0 1 0

*
90q− 0 0 0 0 0 0 0 0 1

�

�

�

�

�

�

 

c 

c 

c 

c 

c 

c 

c c 

c c 
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Therefore =)(2 sD
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If 0→s  we get 0)0(2 =D  which is true                     [8.16]                                                                   
    

Now =)(2 sN  
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Solving this Determinant, we get  
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              [8.17] 
If 0→s  we get  

)()1(
)()1)(()0(

242014014151414022

2420011151414242002

pppppppp
ppppppppN

++−−+
++−−+=

µµ
µµ

     [8.18]
   

Let 01514142420 )1)(( Lppppp =−−+ , 1242001 )( Lppp =+ , 

  215141402 )1( Lpppp =−− , 424021401 )( Lpppp =+      [8.19 - 8.22] 
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To find the value of )0(/
2D we collect the coefficient jim in )(2 sD  we get  

Coeff. of 0
'

151414242009030201 )1)(()( Lpppppmmmm =−−+====   

Coeff. of 1
'

412402242001151410 )()( Lppppppmmm =++===            
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'
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'
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 Coeff.f 4
'

240214011524024841 )()1()( Lpppppppmm =++−==  

Coeff. of 5
'

411524022420150151 )()( Lppppppppm =++=  
6
'
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7
'
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Coeff. of 8
'

482402242048140180 )()( Lppppppppm =++=  
Coeff. of 9

'
15141424200990 )1)(()( Lppppppm =−−+=  

                               [8.23-8.32]                 
Thus the solution for the steady-state availability is given by 
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i
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             [8.33]                                                      
9. BUSY PERIOD ANALYSIS 
 
(a) Let )(tWi )7,6,5,4,3,2,1( =i denote the probability that the repairman is busy initially with repair in regenerative state iS  
and remains busy at epoch t without transiting to any other state or returning to itself through one or more regenerative states. 
By probabilistic arguments we have 

)()( 11 tGtW = , )()( 22 tGtW = , )()( 33 tGtW = , )()( 44 tGtW = , )()( 55 tGtW =  , )()( 66 tGtW = , )()( 77 tGtW =  

                 [9.1-9.7] 
Developing similar recursive relations as in availability, we have 

∑
=

=
9,3,2,1

00 )()()(
i

ii tBtqtB
      

 ;   )()()()( 1
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11 tBtqtWtB ii
i
∑
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;    

∑
=

+=
7,6,4,0

222 )()()()(
i

ii tBtqtWtB
     

;  )()()()( 03033 tBtqtWtB += ;         

)()()()( 4
8,1

44 tBtqtWtB ii
i
∑
=

+=     ;         )()()()( 15155 tBtqtWtB += ;  

)()()()( 06266 tBtqtWtB +=       ;          )()()()( 27277 tBtqtWtB +=  

)()()( 0808 tBtqtB =        ;          )()()( 0909 tBtqtB =  

 

           [9.8-9.17] 
Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get 
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[9.18] 

Where 1010xq is denoted by [8.15] and therefore )(/
2 sD is obtained as in the expression of availability. 

 

c 

c 

c 

c 

c 

c 

c c 

c c 
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Now =)(3 sN                  
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Solving this Determinant, In the long run, we get the value of this determinant after putting 0→s  is 

)1(
)1()1()1(
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15141427022
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             77665544332211 LLLLLLL µµµµµµµ +++++++= = ∑
= 7,6,5,4,3,2,1i

ii Lµ           

          [9.19] 
Where 1242001 )( Lppp =+ , 215141402 )1( Lpppp =−− , 315141403 )1( Lpppp =−− , 

424201401 )( Lpppp =+ , 524201501 )( Lpppp =+ , 61514142602 )1( Lppppp =−− , 

71514142702 )1( Lppppp =−−           [9.20–9.26]
   
Thus the fraction of time for which the repairman is busy with repair of the failed unit is given by: 
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              [9.27] 

(b)Busy period of the Repairman in preventive maintenance in time (0, t], By probabilistic arguments we have 
)()(9 tBtW =                                                                                                          [9.28] 

Similarly developing similar recursive relations as in 9(a), we have 
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           [9.29-9.38] 

Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get 
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/*
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*
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[9.39] 

 Where 1010xq is denoted by [8.15] and therefore )(/
2 sD is obtained as in the expression of availability. 
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Solving this Determinant, In the long run, we get the value of this determinant after putting 0→s  is   

995115141424200994 )1)(()0( LpppppppN µµ =−−+=           
                   [9.40] 

Thus the fraction of time for which the system is under preventive maintenance is given by: 
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(c)Busy period of the Repairman in Shut Down repair in time (0, t], By probabilistic arguments we have 
)()( 88 tGtW =                                                                                                    [9.42] 

Similarly developing similar recursive relations as in 9(b), we have 
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                 [9.43-9.52] 

Taking Laplace stieltjes transformation of above equations; and writing in matrix form, we get 
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Where 1010xq is denoted by [8.15] and therefore )(/
2 sD is obtained as in the expression of availability. 
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Now =)(5 sN                  
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In the long run, we get the value of this determinant after putting 0→s  is  
 88242048140185 )()0( LpppppN µµ =+=       [9.53] 
Thus the fraction of time for which the system is under shut down is given by: 
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10. PARTICULAR CASES 
 
When all repair time distributions are n-phase Erlangian distributions i.e. 
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            [10.1-10.2]               
And other distributions are negative exponential 
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where 1x  = α + β +γ                            [10.15-10.38] 
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11. PROFIT ANALYSIS 
 
 The profit analysis of the system can be carried out by considering the expected busy period of the repairman in repair of 
the unit in (0,t]. 
Therefore, G(t) = Expected total revenue earned by the system in (0,t] -Expected repair cost of the failed units 

-Expected repair cost of the repairman in preventive maintenance -Expected repair cost of the       
Repairman in shut down 

        )()()()( 3423121 tCtCtCtC bbbup µµµµ −−−=  

        = 0
3

40
2

30
1

201 BCBCBCAC −−−                              [11.1]                         

Where ∫=
t

up dttAt
0

0 )()(µ ; dttBt
t

b ∫=
0

1
01 )()(µ ; dttBt

t

b ∫=
0

2
02 )()(µ ; ∫=

t

b dttBt
0

3
03 )()(µ

[11.2-11.5]
 

1C is the revenue per unit time and 432 ,, CCC  are the cost per unit time for which the system is under simple repair, 
preventive maintenance and shut down repair respectively.  
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Figure 1: state transition diagram 
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