
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 906

ISSN No. 0976-5697

Determining the Effect of Similar Queries in Cache-based Cloud Datastores

Ruchi Nanda
Sr. Asst. Prof., Department of CS & IT

The IIS University
Jaipur, Rajasthan, India

Prof. Swati V. Chande
Head, Department of CS

International School of Informatics & Management
Jaipur, Rajasthan, India

Prof. Krishna S. Sharma
Advisor, The IIS University

Jaipur, Rajasthan, India

Abstract: Caching is one of the techniques that facilitates reduction in number of database accesses, load of queries on the database server,
speeds up the data retrieval process, and also reduction in the query processing time and overall response time. With the increase in size of data
in cloud environment, the cloud datastores are expected to manage static data as well as dynamic data efficiently. Static databases are crucial to
maintain, as all the decisions and analyses are made on the basis of the data available in these databases. A caching scheme is utilized with the
aim to enhance the performance of static cloud database queries. The processing time is evaluated over different percentage of cache-hit queries.
Experiments performed on HBase show that the time to retrieve the results of cache-miss queries gradually decreases as the cache starts getting
populating with more cache-miss queries. There is also reduction in the time taken by the queries when directly executed in succession on non-
cache based system. Therefore, an experiment is conducted to check the effect of similar cache-hit queries when run in succession on cache
based system. The comparisons are made against the non-cache based system and it shows that successive trips to cache, lead to the performance
improvement in cache-based datastore over non-cache based datastore by 48.64%, in terms of the cumulative processing time.

Keywords: Caching, column-based datastores, HBase, Cache-size, Cloud-based systems, cloud datastores, Static Cloud Datastore, Processing
Time, Query Response Time

I. INTRODUCTION

With the increase in size of data in cloud-based systems,
it is crucial to maintain static databases and dynamic
databases. The data generated by social networking sites,
forums, blogs and other information sharing websites is
increasing very rapidly leading to creation of static data in
large volumes. The importance of static data is therefore,
paramount as several decisions and analysis are made on the
basis of this data. It is hence, a major main concern for
organizations to effectively maintain static data.

This study has been carried out with the objective to
enhance the performance of static cloud database queries
which handle multiple client queries. It stores query and its
results on the database-tier of the server. Clients directly
access the cache for their query results and only if the results
are not found in cache, then it is retrieved from the
underlying static datastore. Hence, it reduces the number of
direct interactions with the database. When the cache
exceeds its maximum size, the least recently used (LRU)
replacement algorithm executes, that replaces the least
recently used query and its result with the new query and its
result. The cloud environment is set by developing a Virtual
Machine Cloud (VMC) cloud using Cloud Virtual Machine
Creation (CVMC) algorithm [1], which gives a virtual
machine access to client on cloud server.

The paper is organized as follows:
Section II contains related work on caching. Section III

describes the role of caching in enhancing query performance
and the experimental setup, evaluation parameters,
experiments conducted and results obtained are discussed in
Section IV and finally the last section contains the
conclusions drawn from the present work.

II. REVIEW OF RELATED WORK

Caching mechanisms have been developed for caching
not only just static data and dynamic data but several authors
have also worked on caching part of the database. These
authors vary the parameters such as type of queries, database,
cache-size, page replacement algorithms, so as to obtain
either reduction in the query response time or load on the
database server.

Authors mostly focused on range queries [2], and some
of them on the most frequently accessed queries [3][4]. Most
of the authors used the relational database management
system like Oracle and key-value stores as the platform. Fan
et al. [3] considered that node selection is based on random
data partitioning across all cluster nodes, instead of
correlated partitioning, as in case of Bigtable or HBase
systems. The caching techniques are applied to structured
databases by [4]-[6] or are distinctly provided as a cloud
service [7]. The authors believed that data cache should
become a cloud service and shared by multiple tenants.
Chockler et al. [7] designed a simple multi-tenant data cache
scheme, named BLAZE, based on the CLOCK replacement
algorithm that uses utility-based cache partitioning between
tenants.

Updating the cache data is vital if the database tends to
change dynamically. Keeping in mind, the updated data as
well as maintaining the indexing and consistency of the data,
Dong et al. [4] proposed a cache system for frequently
updated data in the cloud (CSFUD). The techniques used by
them were applied to update data queries on document-
oriented NoSQL databases, and relational databases like
Oracle and DB2.

The work has been carried on static-data caching by
[6][8] and on dynamic-data caching by [4][9]. In cloud-based
systems as the size of the data is emerging, for important

Ruchi Nanda et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,906-910

© 2015-19, IJARCS All Rights Reserved 907

business analysis, static database performance is much more
important. Caching algorithms [3][4][5][7] proposed, mainly
focused on SQL-based systems and document-based stores.
There is no prior study to our knowledge that has applied
caching mechanism on column-based stores. Hence, in the
area of query processing, caching is one of the fields where
there is scope of further research.

The related studies do not consider query processing time
as the major factor, instead focus majorly on load balancing
and cost factor. As per authors, Kim et al. [10] and Karde
and Thakare [11], in highly distributed environment, cost is
not the dominant factor. The query response time is the
major issue in improving the performance of timely retrieval
of data [12][13]. These studies have acted as a motivation to
cache queries and results to reduce the processing time of
multiple queries.

III. CACHING IN ENHANCING QUERY PERFORMANCE

Caching is one of the techniques that reduces the load on
the back-end servers as well as reduces the query processing
time. The caching framework [14] proves that caching is a
viable alternative in NoSQL datastores. In this paper, cache
index is created for the queries present in the cache. The
server receives the queries from the client using a text file,
where it is looked up in an index created for the cache. If the
query is found in the index, the query results are directly
retrieved from the cache and returned to the client. In this
case, the query is processed by the cache. If the query is not
found in the index, it is sent to the underlying datastore for
the processing. In this case, query is processed and evaluated
by the underlying datastore and the query results are then,
sent to the client. The query and its results are also sent to the
cache, where it is stored and entry in the index is made for
that query.

IV. EXPERIMENT & RESULTS

A. Experiment Setup
The experiment was performed on VMC server [2]. The

underlying datastore was Apache HBase-0.94. Python
program is executed on HBase using HappyBase-0.3 version.
The experiment was run in a steady environment where the
system had one virtual machine running.

B. Evaluation Parameters
For the evaluation of the caching system different

parameters have been used which are discussed below:
The performance improvement provided by the cache is

measured in terms of cache-hit and cache-miss ratio [15].
The response time of the queries are calculated by the
summation of CPU time, I/O time and the communication
time by using (1).

 (1)

In this, network latency time is not considered, hence
communication time is not included for the calculation of
query response time. The average response time (ART) of
the system is calculated by the difference between the query
issuing time and the result receiving time. Raichuria et al.
[10] used (2) for the calculation of ART.

 (2)

where, tb is the query-issuing time, te is the time of the
result reaching the query-issuer and NC is the total number
of completed queries.

The time taken by the CPU to process the queries is

calculated by (3) [10]:

 (3)
where, tcp is the time taken by CPU to process queries

and NC is the total number of completed queries.

The cache-hit query is directly retrieved from the cache

and hence the processing time of the query is reduced. The
disk is not accessed and the database engine does not execute
the cache-hit query, the results are directly retrieved from the
memory (i.e. cache). This results in the reduction of CPU
time, which in turn, decreases the processing time. If the
query is cache-miss, the result is retrieved from the database,
after the query completes all the phases of query processing
including its execution by the database engine.

In this paper, the processing time in case of cache-hit and
cache-miss queries are calculated to assess the behavior of
cache with respect to the data retrieval time. The paper also
focuses on the calculation of query response time. It includes
all the overheads of cache system, such as time taken to
make the query as the most recently accessed query and the
time taken to build the result to a form that can be sent to the
client. This is done to compare the performance of the
database system having cache with non-cache database
system. Average query response time and average
cumulative processing time are used interchangeably in the
paper.

The details of processing time and cumulative processing
time are given below:

Processing Time (PT) in case of Cache-hit query: The
time taken to process the cache-hit query is, the time to look
in the index and retrieve the query result from the memory
i.e. cache. It is called as cache-retrieval time and denoted by
CRT. It is calculated by using (4):

 (4)
Processing Time in case of Cache-miss query: It is the

summation of the time taken by the system to search the
index of the cache and the time taken to retrieve the result
from the database. It is calculated by using (5).

 (5)
where, CRT includes only the time to search a query in

an index.

Cumulative Processing time (CPT) in case of cache-hit: It

comprises of three components:
• Cache-retrieval time (CRT): It is the time taken

by the incoming query to look in the index and
the time taken to retrieve the result from the
cache.

• Time taken to Send (TTS): The time taken by
the cache system to build the result to a form
that can be sent to the client socket.

• Background Pointer Time (BPT): The time
taken to change the pointer of the current query
and its result to the rear of the cache, to make it
as the most recently accessed query. This

Ruchi Nanda et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,906-910

© 2015-19, IJARCS All Rights Reserved 908

process occurs after sending results to the client.
Hence, this is treated as a background time. The
formula for its calculation is given by (6).

 (6)
where, CRT includes the time to search a query in an

index and then the time taken to retrieve the answer from
cache.

Cumulative Processing time (CPT) in case of cache-miss:

It comprises four components:
• Cache-retrieval time (CRT): The time taken by

the incoming query to search the index
maintained for cache.

• Database Retrieval Time (DBRT): The time
taken by the cache system to call database and
retrieve the result from it.

• TTS: The time taken by the caching system to
build the result to a form that can be sent to the
client socket.

• Cache-Insertion Time (CIT): The time taken to
append the cache-miss query and its result in the
cache. This process occurs after sending results
to the client. Hence, this is treated as a
background process.

The formula for its calculation is given by (7).

 (7)
where, CRT includes only the time to search a query in

an index.
The different sets of times are calculated separately to

thoroughly assess the behavior of cache. It helps in
identifying the areas that require more time.

C. Experiments
The experiments have been carried out keeping in view

the objective of evaluating the performance of the caching
system in the chosen environment and also in practice. The
description is as follows:

Experiment No.1: To evaluate the performance of cache-
based datastore against non-cache column datastores

The primary objective of this experiment is to evaluate
the performance of the datastore having cache solution
against non-cache based column datastores, in terms of time.
Previous research shows that caching reduces query
processing time in SQL-based and document-oriented
datastores [4][6]. This experiment is performed to check the
impact on processing time, when different percentage of
cache-hit queries increases. Thorough tests are conducted for
each percentage of exact hit and miss, i.e., from exact cache-
hit 100% to 20% in (intervals of 20%).

The cache-size of 50 queries i.e. 20% of the database size

was chosen. The studies reported in literature show that the
optimum cache-size varies from 10% to 20% of the database-
size [16]. BlogInfo database having 250 records is used.
Initially, five queries are chosen for warming the cache. One
query set is prepared for 100% cache-hit queries, since the
cache is warmed by five queries. For remaining percentage
of exact hit, three query sets are prepared, so that the

experiment is run thrice for each cache-hit percentage and
the possibilities of any variation caused by environmental
factors are neglected. The total number of query sets
prepared is 13 and the total number of queries processed by
the cache is 65. Each query set is generated successively. The
experiment for each percentage of cache-hit queries is run
thrice by executing the program and each query set is
generated successively. Table 1 shows PT and CPT between
the two successive percentages of cache-hit queries in each
run of the experiment.

Table I. Average processing and cumulative processing time (in
seconds) in each run of the experiment

Cache-hit % 100% 80% 60% 40% 20%
Run - I
PT (sec) 0.0000 0.0068 0.0097 0.0132 0.0184
CPT: Cache
(sec) 0.0005 0.0073 0.0101 0.0136 0.0186

CPT: non-
cache HBase
(sec)

0.0558 0.0500 0.0434 0.0320 0.0224

Run - II
PT (sec) 0.0000 0.0075 0.0114 0.0117 0.0115
CPT: Cache
(sec) 0.0004 0.0080 0.0117 0.0120 0.0117
CPT: non-
Cache HBase
(sec)

0.0558 0.0520 0.0418 0.0320 0.0228

Run - III
PT (sec) 0.0000 0.0106 0.0116 0.0174 0.0132
CPT: Cache
(sec) 0.0005 0.0110 0.0120 0.0177 0.0134

CPT: non-
Cache HBase
(sec)

0.0558 0.0474 0.0434 0.0286 0.0226

Table II shows the average PT and CPT and also relative

changes in PT and CPT between the two successive
percentages of cache-hit queries. It shows that average
processing and cumulative processing time increases as we
go from 100% to 20% cache-hit. The relative change,
measured in seconds, increases from 100% to 80%, 80% to
60% and decreases from 40% to 20% cache-hit percentage.
As the cache gets populated with the new queries, the DBRT
of the cache-miss queries starts decreasing.

Observations from Experiment 1:

It is observed that the average PT of the queries increases
with the decrease in the percentage of exact cache-hit
queries. The change in PT from 40% to 20% is
comparatively less. This is due to the fact that as the cache-
hit percentage decreases, the cache starts getting populating
with more cache-miss queries and the time to retrieve the
results of the cache-miss queries gradually decreases.

The average CPT on non-cache HBase decreases from
100% to 20%. The relative change in CPT decreases from
100% to 80%, 80% to 60% and the change is more evident
from 40% to 20%. This drop in the cumulative time is due to
the partial caching in database system and operating system
[6].

Ruchi Nanda et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,906-910

© 2015-19, IJARCS All Rights Reserved 909

Table II. Relative Changes in average processing time and average cumulative processing time (in seconds) over non-cache HBase system

Cache-hit % 100% 80%

Relative
change from
100%-80%

(sec.)

60%

Relative
change from

80%-60%
(sec.)

40%

Relative
change from

60%-40%
(sec.)

20%

Relative
change from

40%-20%
(sec.)

PT(sec.) 0.0000 0.0083 0.01 0.0109 0.31 0.0141 0.29 0.0144 0.02
CPT: Cache (sec) 0.0005 0.0087 16.40 0.0113 0.30 0.0144 0.27 0.0146 0.01
CPT: non-cache HBase (sec) 0.0558 0.0498 -0.11 0.0429 -0.14 0.0309 -0.28 0.0226 -0.27
Improvement using Cache (in %) -99.10 -82.53 -73.66 -53.40 -35.40

It can be concluded from this experiment that the cache-

based system definitely takes more time when the queries are
approaching first time in cache, but as the cache starts getting
populating, the time to retrieve the results of cache-miss
queries also gradually decreases. These observations on
average processing time are visible in Figure 1. It shows the
average processing time increases more rapidly from 100%
to 80% cache-hit queries. There is comparatively less
increment from 80% to 60% and from 40% to 20% it is
almost constant.

Figure 1. Average Processing Time of Different Percentage of Cache-hit
Queries

The observations on the cumulative processing time are
shown graphically in Figure 2. The average CPT of non-
cache based system decreases with the decrease in the cache-
hit percentage and the average CPT of cache based system
increases with the decrease in the cache-hit percentage. But
the time taken by cache-based system is less as compared
with the non-cache based system.

The performance improvements of cache-based system
over non-cached HBase in percentages are shown in Figure
3. The improvements in cache-based datastore are 99.1%,
82.53%, 73.66%, 53.40%, and 35.40% at 100%, 80%, 60%,
40% and 20% respectively.

Figure 2. Performance of cache against non-cache column datastores

Figure 3. Performance improvement of cache-based system

Experiment No. 2: To determine the effect of similar
successive queries on the cache-based system and the non-
cache based system

The previous experiment shows that the processing time
of the cache-hit queries remains almost negligible. This
results in almost negligible cumulative processing time. In
case of non-cache HBase, time tends to decrease when a set
of queries are executed, which is clearly seen in Table II.
This experiment checks whether for the similar queries
executed in succession, also time of the cumulative
processing of cache-based system decreases. Since the cloud
database is shared by many clients, there is always a great
possibility of similar queries from different clients. To
determine the affect of successive similar queries, the test is
performed on a set of ten similar queries. The cache is
initially empty. The test is run five times in succession, so
that we can easily compare the cumulative processing time at
different runs. In each execution of the experiment, the
cumulative processing time of the cache system is calculated.
Similarly the same sets of queries are executed on non-cache
HBase and their time is shown.

Table III shows the change in CPT in seconds, between
the two successive runs of the experiment. The average
change in CPT (cache-based) in all run is -0.0124 seconds
and relative change from Run 1 to Run 5 (in percentage) is
-99.40%. The average change in CPT (non-cache HBase) in
all run is -0.0242 seconds and relative change in percentage
from Run 1 to Run 5 is -62.56%. The negative value shows
the decrease in the average CPT. The percentage
improvement of cache over non-cache based HBase is
48.64%.

Ruchi Nanda et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,906-910

© 2015-19, IJARCS All Rights Reserved 910

Table III. Percentage improvement in cumulative processing time in successive trips to cache v/s non-cache HBase

Avg. CPT:
(sec.) Run1 Run2

Change in CPT
from Run 2 to
Run 1 (sec.)

Run 3
Change in CPT
from Run 3 to
Run 2 (sec.)

Run 4
Change in CPT
from Run 4 to
Run 3 (sec.)

Run5
Change in CPT

from Run 5 to Run
4 (sec.)

Avg change in
CPT in all runs

(sec.)
cache 0.0499 0.0003 -0.0496 0.0003 0.0000 0.0003 0.0000 0.0003 0.0000 -0.0124

non-cache 0.1544 0.0605 -0.0939 0.0535 -0.0070 0.0671 0.0136 0.0578 -0.0093 -0.0242

Relative change in CPT from Run 1 to Run 5 (%):

 -99.40% (cache)

 -62.56% (non-cache)

% improvement of cache over non-cache HBase: 48.64%

 Observations from Experiment 2:

It is observed that there is vast reduction of 99.93% in the
overall cumulative processing time from run one to run two.
The overall percentage reduction is found to be 99.40%. The
result shows that the cache-based system, takes negligible time
to process queries in each run. The cumulative processing time
is therefore, almost constant after Run 2.

The non-cache based HBase results illustrate speed up of
cumulative processing time in second run and during third and
fifth run. It is due to the partial caching of results by operating
system and internal HBase database [6]. It is not close to the
processing time of cache. The overall percentage reduction in
non-cache HBase is around 62.56% only.

The conclusion from the experiment is that percentage
improvement (reduction in cumulative processing time) of
cache in comparison to non-cache HBase is around 48.64%.

The graph represented in Figure 4 clearly depicts the above
observations. It shows that the curve showing average CPT in
case of cache-based HBase decreases rapidly from Run 1 to
Run 2 and remains constant after Run 2. In case of non-cache
based HBase, the curve rapidly decreases from Run 1 to Run 2,
but not as close to cache curve. It decreases from Run 2 to Run
3 and slightly increases from Run 3 to Run 4. It again decreases
from Run 4 to Run 5.

Experiments 1 and 2 show that, the processing time
definitely reduces when more cache-hit queries approach the
cache. The overall performance of cache-based system is also
observed.

Figure 4. Average Impact of Successive 100% Cache-hit Queries on the
database having cache in three Executions

V. CONCLUSIONS

The performance enhancement of static cloud datastores
queries is paramount. This paper evaluates the performance of
static cloud datastore queries. The impact of different
percentage of cache-hit queries are experimentally determined
and observed that the average PT of the queries increases with
the decrease in the percentage of exact cache-hit queries. The
change in PT from 40% to 20% is comparatively less. This is

due to the fact that as the cache-hit percentage decreases, the
cache starts getting populating with more cache-miss queries
and the time to retrieve the results of the cache-miss queries
gradually decreases. The improvements in cache-based
dataastore are 99.1%, 82.53%, 73.66%, 53.40%, and 35.40% at
100%, 80%, 60%, 40% and 20% respectively. It also shows
that the successive trips to cache, lead to the performance
improvement in cache-based datastore over non-cache based
system by 48.64%, in terms of the cumulative processing time.

VI. REFERENCES

[1] R. Nanda, K. S. Sharma, S. Chande 2017. Determining Appropriate
Cache-size for Cost-effective Cloud Database Queries. International
Journal of Computer Applications, Volume 157, Issue 6 (2017), 29-34,
0975 – 8887.

[2] O. D. Sahin, A. Gupta, D. Agrawal, and A. El Abbadi 2004. A peer-to-
peer framework for caching range queries. In Proc. Data Engineering.
IEEE, pp. 165-176.

[3] B. Fan, H. Lim, D. G Andersen, and M. Kaminsky, “Small cache, big
effect: Provable load balancing for randomly partitioned cluster
services,” in Proc. of the 2nd ACM Symposium on Cloud Computing,
2011, p. 23.

[4] F. Dong, K. Ma, and B. Yang. 2015. Cache system for frequently
updated data in the cloud. WSEAS Transactions on Computers, vol. 14,
pp. 163-170.

[5] M. Perrin 2015. Time-, Energy-, and Monetary Cost-Aware Cache
Design for a Mobile-Cloud Database System. Doctoral dissertation,
University of Okalahoma.

[6] B. J. Sandmann 2014. Implementation of a Segmented, Transactional
Database Caching System. Journal of Undergraduate Research at
Minnesota State University, Mankato, vol. 6(1), pp. 21.

[7] G. Chockler, G., Laden, and Y. Vigfusson 2010. Data caching as a cloud
service. In Proc. of the 4th International Workshop on Large Scale
Distributed Systems and Middleware ACM, pp. 18-21.

[8] Bu, Y., B. Howe, M. Balazinska, and M. D. Ernst (2012) The HaLoop
approach to large-scale iterative data analysis. The VLDB Journal—The
International Journal on Very Large Data Bases, 21(2), 169-190.

[9] K. Raichura, N. Padhariya, and K. Atkotiya 2014. Cache-Based Query
Optimization In Mobile Ad-Hoc Networks,” International Journal of
Technology Enhancements and Emerging Engineering Research, vol.
3(2), pp.226-232, 2014.

[10] W. Kim, D. S. Reiner, and D. Batory (Eds.) 2012. Query processing in
database systems. Springer Science & Business Medi, Springer-Verlag,
Berlin, Heidelberg.

[11] P. Karde, and V. Thakare 2010. Selection of materialized views using
query optimization in database management: An efficient methodology.
International Journal of Management Systems, vol. 2, pp. 116-130.

[12] Feng - Xiao, S. Y. J. M. 2013. A Survey of Query Techniques in Cloud
Data Management Systems [J]. Chinese Journal of Computers, vol. 2,
pp. 001.

[13] K. Ma, and B. Yang 2015. Introducing extreme data storage middleware
of schema-free document stores using MapReduce. International Journal
of Ad Hoc and Ubiquitous Computing, vol. 20(4), pp. 274-284.

[14] R. Nanda, K. S. Sharma, S. Chande 2016. Enhancing the Query
Performance of NoSQL Datastores using Caching Framework.
International Journal of Computer Science and Information
Technologies, Volume 7, Issue 5 (September-October 2016), 2332-2336,
0975-9646.

[15] D. Wessels 2001. Web caching, O'Reilly Media, Inc.
[16] A. N. Packer 2001. Configuring and tuning databases on the Solaris

platform. Prentice Hall PTR.

	Introduction
	Review Of Related Work
	Caching In Enhancing Query Performance
	Experiment & Results
	Experiment Setup
	Evaluation Parameters
	Experiments

	Conclusions
	References

