
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 804

ISSN No. 0976-5697

Advance Resource Reservation based on Context Aware Workload
Parimal Gajre, Prof. Vivek Prasad and Dr. Madhuri Bhavsar

Institute of Technology
Nirma University

Ahmedabad, Gujarat, India

Abstract: Cloud computing gives the facility of provisioning resources on rent in pay as-you-go fashion, due to which resource demand changes
dynamically over time. Such type of dynamic resource demand leads to mainly two types of problems such as Over-Provisioning and Under-
Provisioning. The former leads to violations of Service Level Objectives (SLOs) whereas latter leads to wastage of resources, as the system is
not being used to full capacity all the time. Also some cloud having limited number of resources cannot satisfy all the requests at a time.
To handle such scenario advance reservation techniques are used, so that the resources available could be used efficiently with minimum
possible provisioning cost and at the same time satisfying service level objectives. In the proposed technique, history of resource usage profile of
tasks is maintained. For each task submitted to cloud, pattern finding technique is used a task with similar resource usage requirement from
history of resource usage profile. After that check-pointing mechanism is used to monitor completion of new task based on resource usage
profile of task found in history. Such type of monitoring helps in order to estimate the amount resources that will be released in short duration
and based on that resources can be reserved in advance as per user’s request. Hence problem of under as well as over provisioning could be
solved up to great extent at the same time meeting the Service Level Objectives.

Keywords: Resource Provisioning, Check-pointing, Advance Reservation, Profiling, K-means clustering.

I. INTRODUCTION

In recent years cloud computing has gained an immense growth,
especially in the use of public clouds. Giant companies like
Microsoft, Google, Amazon and Rackspace have released their
public cloud infrastructures such as Microsoft Azure, Google App
Engine, Amazon Web Services and Rackspace Cloud Servers. For
such huge enterprise software systems provisioning high assurance in
terms of Quality of Service (QoS) metrics such as service
availability, high throughput and response time is necessary.
Customers signs Service Level Agreements (SLA) with Cloud
Service Providers (CSP), which species the QoS metrics agreed by
CSP to satisfy. In case if it fails in fulfilling the QoS mentioned in
SLA, it will result in a great loss in income as it will tend to lose its
customers base. While at same time maintaining SLA and also
keeping costs low is dicult task to achieve for cloud service
providers, because number customers to cloud computing system are
not constant.

Also the applications that customers need to migrate to cloud have
varying resource requirements, so it is necessary tohave dynamic
mechanism for resource provisioning, in order to satisfy such
varying requirements of the applications. This raises the
difficult challenge to predict behaviour of applications at run-
time in order adjust provisioning of resources dynamically.[5]
[7]

A. Provisioning Issues

Mainly there two types of problems in provisioning of
cloud resources as:

• Under Provisioning: Leads to the violations of the
service level objectives, often associated with
financial penalties.

Fig. 1: Under Provisioning of Resources[3]

Figure 1 shows the case of under-provisioning when capacity
of resources is planned such that SLAs are broken most of the
time leading to customer’s dis-satisfaction. So it would lead to
loss of customer’s base thereby adversely affecting revenue
generated by Cloud Service Provider (CSP).

• Over Provisioning: Leads to wastage of the
resources, as the system is not being used to full
capacity all the time.

Fig. 2: Over Provisioning of Resources[3]

Figure 2 shows the case over-provisioning when capacity of
resources is planned to meet peak load condition, so resources
will remain idle most of the time. Here, SLA with customers
will be satisfied but wastage of resources will increase as
resources will remain in idle condition when the system is not
being used to its full capacity.

Parimal Gajreet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 804-808

© 2015-19, IJARCS All Rights Reserved 805

B. Provisioning Strategies

For provisioning of cloud resources mainly two strategies
are used as:

• On Demand Provisioning: In this method resources are
allocated, if available at the time of request, else wait
till enough resources becomes available. Hence latency
for resource availability can be much high. Also as
resource demand is dynamic, so problem of thrashing
may occur due frequent allocation and de-allocation of
resources.

• Reservation of Resources: In this method resource

requirement is predicted based on previous resource usage
history and accordingly resources could be kept ready. So
that resources would be available when resource request is
actually encountered. Also release time of allocated
resources could be estimated and accordingly reservation
of resources for resource re-quests could be made in near
future. Hence using reservation method it can be ensured
resources will be available when required and so latency
for resource availability is reduced. Also availability of
resource can be planned, thereby reducing frequent
allocation and de-allocation of resources, so problem of
thrashing can be mitigated.

II. RELATED WORK

Survey done regarding related work for prediction of

workload and reservation of resources is as follows,

Rostyslav, Leitner and others discussed two methods of
profiling used for provisioning of resources and task
scheduling. The two methods discussed for profiling are
passive profiling which corresponds coarse grain profiling
whereas active profiling which corresponds fine grain
profiling.[10]

Ren, Gang and Tune and others specifies profiling done in
google data centres, which captures events such as resource
usages, kernel events, heap profiles, lock contention profiles,
hardware events and so on. Such profile is used to manage
workload on data centres.[6]

Sheng, Robert, Yves and Vivien defines mechanism for
checkpoint in which transient memory of running tasks is
saved to disk instead of storing entire VM state, so the
overhead of check-pointing can be reduced.[2]

Sangho, Kondo, Derrick and Andrzejak discusses about
Amazon Elastic Cloud Compute (EC2), which uses
checkpointing mechanism to offer high reliability at low cost
and volatility of resource provisioning.[9]

Lemarinier, Pierre, Krawezik and others compares two
checkpointing methods namely, Coordinated Checkpoint and
Message Logging associated with Uncoordinated Checkpoint.
Based on evaluation results of both method it is discovered
that message logging has higher performance over
coordinated checkpointing even with a frequency of one fault
per hour.[1]

Sotomayor, Borja, Keahey and others discusses about
Haizea, a lease management architecture that implements
leases as provisioning of virtual machines (VM), taking
advantage of VMs to be suspended, migrated and resumed.
Also applications can be provided customized environment
using VMs. Here resource requests are categorized as
preemptible best effort and non-preemptible advance
reservation.[8]

Hui, Groep, David and Templon discusses about
prediction of start time of jobs based on statistical analysis of
historical job traces and simulation of schedulers at different
sites. Using such prediction of job start time middle-ware
component such as resource broker can balance workload
distribution. Also it can be used to compute price of resources
in a grid accounting system. [4]

III. PROBLEM STATEMENT

Provisioning of resources in cloud is crucial task as

demand of resources varies continuously. Preparing for peak
load would lead to wastage of resources as the resources will
remain idle when system is not used to its full capacity,
whereas preparing for average load would lead to violations of
SLAs with customers. So in-order to provision resources
incurring low cost for CSP and at the same time maintaining
the SLAs with customers, resource provisioning should be
done judiciously. To solve this problem of resource
provisioning, advance reservation of resources can be used as
mechanism. In this technique resources are provisioned in
such a manner that it benefits customer by providing guaranty
of resource avail-ability and the same time benefiting Cloud
Service Provider(CSP) by providing power to service all
customers utilizing the available resources efficiently.

IV. PROPOSED SYSTEM

A. Proposed Working Model

As shown in figure 3 is proposed working model of the
system is presented. Functionality of various modules
included in proposed working model are as follows,

Fig. 3: Proposed Working Model

Parimal Gajreet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 804-808

© 2015-19, IJARCS All Rights Reserved 806

• Profiling and Resource Monitoring: Functionality

of this module is to compare new task submitted to
cloud with tasks in historical data set of resource
usage profile and to find appropriate resource usage
pattern. Then monitor the completion of tasks based
on checkpoints met according to the matched
resource usage profile.

• Task Analyser and Scheduler: Task Analyser’s

functionality is to gather information of new tasks
submit-ted to cloud. It checks the requirements of the
task like arrival time of the task, deadline of the task
and execution time of the task and so on. Then it
passes this information to the scheduler, which
schedules the tasks on VM’s based on availability of
resources.

• Scheduling Algorithm Library: Scheduling

Algorithm Library consists of multiple scheduling
algorithm from which a scheduling algorithm is
chosen according to resource availability.

• Resource Allocator: Functionality of Resource

Allocator is to allocate VM’s to the task based on
resource usage requirement of tasks and availability
of tasks. Ifsome task is unable to complete its
execution within expected amount of time, then new
VM will be created as per the tasks requirement by
resource allocator. Also if resource allocator find
some of the VM’s are lightly loaded or may be idle
then it consolidates tasks of such VM’s thereby
efficiently utilizing the available resources.

B. Flow Model

As shown in Figure 4, flow model of system is presented.
Following are steps involved in flow of system,

• Take input from user interface for newly arriving
tasks.

• Compare resource usage requirement of task submit-
ted to cloud with historical data of resource usage
profile to find tasks with similar resource usage
requirement(Profiling).

• Determine estimated time required by task submitted
to cloud from the tasks in history having similar
resource usage profile.

• Divide the new task submitted to cloud based on time

and place checkpoints at time when a smallest unit of
divided tasks is completed.

• Profile the execution of the newly arrived tasks and

also simultaneously monitor the tasks for its partial
completion and meeting checkpoints.

• Reserve the resources for next arriving task after the

currently executing tasks reaches certain threshold of
its execution.

Fig. 4: Flow Model

C. Checkpoint Mechanism

As shown in Figure 5 checkpoints are placed in profiled
data, so that it can be used to monitor the completion of newly
arrived task of similar resource usage requirement.
Comparison is being done between profiled task and new task
submitted to cloud, to get status of completion of newly
arrived task, based on the checkpoints met by gradual
completion of the newly arrived task. And if a delay is
measured in meeting the checkpoints than it can be predicted
that completion of task will suffer a delay. Also if checkpoints
are met in time then accuracy of prediction about the
completion of task gets higher gradually.

Fig. 5: Checkpoint Mechanism

D. Algorithm

Here, algorithms related to proposed system are
described. Task Mapper algorithm is related to allocation of
resources to task, if available, else call Advance
Reservation algorithm. Advance Reservation algorithm
reserves resources for tasks by estimating time to release of
resources allocated to executing task.

Parimal Gajreet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 804-808

© 2015-19, IJARCS All Rights Reserved 807

Assumption

1) Resource usage profile is done in ideal
environment (i.e. in average loaded condition).
2) Assumption all Tasks are belong to some restricted
domain and are in available Resource Usage Profile.

Algorithm 1: Task Mapper

1: Initialization
2: for each (Task[i] in NewlyArrivedTasks[])
3: if (There is a VM[j] available in

AvailableVMCapacity[] then) then
4: Assign Task[i] to VM[j] for execution and update

status of VM[j]
5: Delete Task[i] from NewlyArrivedTasks[]
6: else if (No VM available in AvailableVMCapacity[]) then
7: Append NewlyArrivedTasks[] to TaskQueue[]
8: AdvanceReservation(TaskQueue[])
9: end if

Algorithm 2 Advance Reservation

1: Initialization
2: for each (Task[i] in RunningTaskList[]) do

if (look for task to similar Task[i] found in Re-
3. Source_Usage Profile) then
4. Do profiling of Task[i] and append to

Resource Usage Profile
5: insert Checkpoints in Task[i] using Logs
6: else
7: RemainingTime=updateCompletion(Task[i])
8: if (RemainingTime < (estimatedTask-

Time(Task[i])*0.20)) then
9: 80% of Task completed

10: makeCheckpoint()
11: notify Task[j] next in queue for TaskQueue[] for

Advance Reservation
12: for each (Task[j] in TaskQueue[])
13: if (Resource Requirement of next Task[j] in

TaskQueue[] <= CheckResourceUtilization(Task[i]))
then

14: //Reserve Resources for Task[j] in TaskQueue[]
15: Assign Task[j] to VM on which Task[i] is executing
16: Delete Task[j] from TaskQueue[]
17: Append Task[j] to ReservedTask[]
18: break;
19: else
20: wait() //wait for some more resources to be
21: end if
22: else if (RemainingTime < (EstimatedTask-

Time(Task[i])*0.40)) then
23: 60% of Task completed
24: makeCheckpoint()
25: notify Task[j] next in queue for TaskQueue[] for

Advance Reservation
26: else if (RemainingTime < (EstimatedTask-

Time(Task[i])*0.60)) then
27: 40% of Task completed
28: makeCheckpoint()
29: notify Task[j] next in queue for TaskQueue[] for

Advance Reservation

30: else if (RemainingTime < (EstimatedTask-
Time(Task[i])*0.80)) then

31: 20% of Task completed
32: makeCheckpoint()
33: notify Task[j] next in queue for TaskQueue[] for

Advance Reservation
34: end if

V. EXPERIMENTATION

ForexperimentationpurposedatasetusedisSanDiegoSupercomp
uterCenter(SDSC) SP2 log, which is available at URL:
“http://www.cs.huji.ac.il/labs/parallel/workload/logs.html”.
Using the specified data set simulation is done in CloudSim
simulator, which provides cloud based environment for
execution of tasks. Initially as new incoming tasks are
executed, a profile of resource usage is generated by
monitoring resource utilization at different instances in time.
As shown in figure 6, graph of resource usage profileis
presented, which shows resource utilization of tasks at
different instances of time, namely Time Instance 1 to Time
Instance 5.

Fig. 6: Profile of Resource Usage

Here resources considered for resource usage profile are CPU
and RAM, which are represented by CPU Instance 1 to CPU
Instance 5 and RAM Instance 1 to Ram Instance 5
respectively, corresponding to measures of CPU and RAM at
different instances of time from Time Instance 1 to Time
Instance 5. Remaining Length Instance 1 to Remaining
Length Instance 5 corresponds to amount of tasks completed
at different instances of time from time Time Instance 1 to
Time Instance 5.

Hence, when a new tasks is submitted to the cloud, a search is
made for category of tasks with similar resource requirement.
For finding category of newly submitted tasks, K-means
clustering algorithm is used. Clusters are formed using
historical data of resource usage profile and when a new tasks
arrives the model is used to find appropriate cluster to which
the tasks belong. As shown in figure 7, weka tool is used for

Parimal Gajreet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 804-808

© 2015-19, IJARCS All Rights Reserved 808

the purpose of K-means clustering to form clusters based on
resource usage profile.

Based on cluster determined an approximate execution time of
tasks is found and then tasks are monitored for partial
completion based on checkpoints met while executing the
tasks.

Fig. 7: Clustering of Tasks using K-means

VI. CONCLUSION

Provisioning of resources is a difficult task, as planning
for peak load leads to over-provisioning and planning for
average load leads to under provisioning. Advance
Reservation discussed here mitigates these problems of under-
provisioning and over-provisioning by reserving resources for
tasks. In technique discussed here advance reservation is done
by estimating time required for release of resources that are
currently executing the ongoing tasks and based on it reserve
resources for new incoming tasks. Hence using such a
reservation technique for resource provisioning, latency of
tasks waiting for resources to become available is also
reduced.

VII. FUTURE WORK

In future, focus will be on developing a system that is
capable of incorporating tasks of new type which are currently
not present in resource usage profile. Hence, when similar
type of tasks arrives in future resource usage profile of this
task incorporated into history can be used to monitor

completion of new tasks submitted to cloud as per the method
discussed in this paper.

VIII. ACKNOWLEDGMENT

We are extremely thankful to our guide Professor Vivek
Kumar Prasad and Dr. Madhuri Bhavsar(Head of Department)
who have provided us a lot of guidance in doing research and
opportunity to do such a wonderful project on Provisioning of
Resources using Profiling and Dynamic Scheduling Policy.
We are glad to work under their expertise.

IX REFERENCES

[1] Aurelien´ Bouteiller et al. “Coordinated checkpoint ver-sus

message log for fault tolerant MPI”. In: Cluster Computing,
2003. Proceedings. 2003 IEEE Interna-tional Conference on.
IEEE. 2003, pp. 242–250.

[2] Sheng Di et al. “Optimization of cloud task process-ing with
checkpoint-restart mechanism”. In: 2013 SC-International
Conference for High Performance Com-puting, Networking,
Storage and Analysis (SC). IEEE. 2013, pp. 1–12.

[3] K. Hwang, J. Dongarra, and G.C. Fox. Distributed and Cloud
Computing: From Parallel Processing to the Internet of Things.
Elsevier Science, 2013. ISBN: 9780128002049. URL: https : / /
books . google . co . in / books?id=IjgVAgAAQBAJ.

[4] Hui Li et al. “Predicting job start times on clusters”. In: Cluster
Computing and the Grid, 2004. CCGrid 2004. IEEE
International Symposium on. IEEE. 2004, pp. 301–308.

[5] Vivek Kumar Prasad. “Load Balancing and Scheduling of Tasks
in Parallel Processing Environment”. In: ().

[6] Gang Ren et al. “Google-wide profiling: A continuous profiling
infrastructure for data centers”. In: (2010).

[7] Ashish G Revar and Madhuri D Bhavsar. “Securing user
authentication using single sign-on in Cloud Comput-ing”. In:
Engineering (NUiCONE), 2011 Nirma Univer-sity International
Conference on. IEEE. 2011, pp. 1–4.

[8] Borja Sotomayor, Kate Keahey, and Ian Foster. “Com-bining
batch execution and leasing using virtual ma-chines”. In:
Proceedings of the 17th international sym-posium on High
performance distributed computing. ACM. 2008, pp. 87–96.

[9] Sangho Yi, Derrick Kondo, and Artur Andrzejak. “Re-ducing
costs of spot instances via checkpointing in the amazon elastic
compute cloud”. In: 2010 IEEE 3rd International Conference on
Cloud Computing. IEEE.2010, pp. 236–243.

[10] Rostyslav Zabolotnyi, Philipp Leitner, and Schahram Dustdar.
“Profiling-Based Task Scheduling for Factory-Worker
Applications in Infrastructure-as-a-Service Clouds”. In: 2014
40th EUROMICRO Conference on Software Engineering and
Advanced Applications. IEEE. 2014, pp. 119–126.

