
Volume 8, No. 3, March – April 2017 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved                    750 

ISSN No. 0976-5697 

Realisation of Cache Optimisation using New Technique 
 

 Komal Agrahari 
Dept. of Computer Science and Engg 

MMMUT Gorakhpur, Uttar 
Pradesh komal.edu16@gmail.com 

Dr.P.K.Singh 
Dept. of Computer Science and Engg 
MMMUT Gorakhpur, Uttar Pradesh 

topksingh@gmail.com 
 

Abstract:  An impressive design of cache memory is an important view in computer architecture to boost or increase the system performance. In 
this task we study the response of reducing the cache performance to the cache address on the performance experimentally. Since cache miss 
penalty has direct contact on the system’s performance. To overtake from this, we proposed a new model in which we use revisited second 
chance FIFO (RS FIFO), which uses partial comparator and use multiple search to increase cache hit rate, by reducing cache miss rate. The 
Above proposed technique gives maximum hit rate when using revisited SFIFO rather than FIFO. 
  
Keywords: cache mapping technique; hit rate; miss rate; cache optimisation; cache replacement policies. 
 

I. INTRODUCTION  

 In this paper we focused on new cache replacement 
policy which reduces the number of misses in the cache 
memory. After evaluating the cache replacement policy we 
found that how the speed of processor is growing and so we 
can say that processor’s performance is very much dependent 
on the number of miss or miss rate. 

Modern computers are very quickly grows due to 
technological growth in CPU memory access method and 
capacity of processing. While the processor to synchronise 
the inconsistency between the fastest processor to the slowest 
memory components at a reasonable or acceptable amount 
we introduce the cache memory. Cache memory is an 
intermediate between CPU and main memory that retains 
copies of recently used information from main memory. The 
processor runs at its high clock rate only when the piece of 
information that requires are present in the cache. So the 
overall average access time can be minimised [2]. The main 
focus of this dissertation is to realize the cache performance 
using the new technique of cache replacement policy. In the 
previous work FIFO is used in the sub blocks of cache 
memory to improve the performance of the cache [1]. Now 
after analyzing lots of result we conclude that the proposed 
policy has lower number of misses in comparison to existing 
policy. And we know that miss rate has very important role 
in the performance of the cache.This paper addresses the 
enhancement of cache performance by applying optimisation 
techniques [4]. 

The structure of the paper is as follows: 
In Section1 we introduce the theory of cache memory and 

existing policy. In Section2 we present our proposed work 
with the steps which is followed by us to achieve the 
objective. In section 3 we present the case study and analyse 
the performance of calculated method with respect to the 
conventional method. In section4 we conclude the paper. 
And at last we go for various references which I gone 
through. 

 
A. Replacement Algorithms 

 When the cache has been filled and then a new block is 
brought into the cache, one of the existing blocks must be 
replaced. For direct mapping, there is only one line for each 
particular block, and no choice is possible.  For the set 

associative and an associative technique [3], a replacement 
algorithm is needed. To gain high speed, such an algorithm 
must be implemented in hardware.   

 
• First-In-First-Out (FIFO) 

The very simple page replacement algorithm is a FIFO 
algorithm (first in first out). The first-in, first- out (FIFO) [1] 
page replacement algorithm has less overhead that entails 
little book-keeping on the operating system part [4]. The idea 
is taken from the operating system that keeps track of each 
page in memory in a queue, with the latest arrival at the back, 
and the earliest arrival in front. The operating system sustains 
a list of all pages which is presently in memory, with that 
page which is at the head of the list the oldest one and the 
page at the tail the most topical arrival. When a page required 
to be swapped, the page at the front of the queue (the oldest 
page) is considered. Since FIFO is cheap and instinctive, it 
results poorly in practical application. 

  
• Optimal Page Replacement 

One result of the discovery of Belady's anomaly was the 
search for an optimal page-replacement algorithm which has 
the lowest page-fault rate of all algorithms and will never 
suffers from Belady's anomaly [1]. This is an algorithm 
which is exist and it is called as OPT or MIN. It is simply: 
Replace the page that will not be used for the longest period 
of time.  

 
•  Least-Recently-used (LRU) 

This algorithm replaces the page that has not been used 
for the longest period of time. We can think of this strategy 
as the optimal page-replacement algorithm looking backward 
in time, rather than forward [4]. FIFO algorithm takes time 
when a block was brought into memory, whereas the OPT 
algorithm takes the time when a block is to be used. The 
LRU policy is often used as a block-replacement algorithm 
and is considered to be good. Now the question arises how 
the implement of LRU replacement is done. An LRU cache 
block-replacement algorithm may require substantial 
hardware assistance. The problem is to determine an order 
for the cache lines which is defined by the time of last use 
[5]. 

 
 

mailto:komal.edu16@gmail.com�


Komal Agrahari et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 750-752 

© 2015-19, IJARCS All Rights Reserved                    751 

• Clock Algorithm 
In CLOCK, all cache line is to be arranged in form of a 

circular list that seems like a clock. A pointer i.e. a hand on 
the clock indicates which cache blocks is to be replaced next. 
When a block is needed, the pointer advances until it finds a 
cache block with a 0 reference bit. As the approach, it clears 
the reference bits. Once a victim block is found, the block is 
replaced, and the new block is inserted in the circular queue 
in that position [2]. The worst case shows that if all reference 
bits are set, the hand cycles through the whole queue has 
given a second chance to each block. And before selecting 
the next block for replacement it clears all the reference bits. 
If all bits are set then Second-chance replacement 
degenerates to FIFO replacement [2]. 

 
• Second-Chance Algorithm 

The extended algorithm of FIFO replacement is a second-
chance replacement algorithm. When a block has been 
selected, we inspect its reference bit. We go to replace this 
block if the value is 0, but if the reference bit is set to 1then 
we give the block as second chance and move on to select the 
next FIFO block. When a block gets a second chance, its 
reference bit is cleared, and its arrival time is reset to the 
current time. Thus, that second chance block will not be 
replaced until all other block have been replaced or given 
second chances. In addition, if a block is used often enough 
to keep its reference bit set, it will never be replaced [1]. 

 

II. PROPOSED WORK 

In this work we make some changes in the method of 
SFIFO and we get better performance in terms of reduce 
miss rate as compared to existing replacement policy. The 
main focus of this dissertation is to realize the cache 
performance using the new technique of cache replacement 
policy. In the previous work FIFO is used in the sub blocks 
of cache memory to improve the performance of the cache. 
Now after analyzing lots of result we conclude that the 
proposed policy has lower number of misses in comparison 
to existing policy. And we know that miss rate has very 
important role in the performance of the cache. 

A. Steps Follows In Our New Policy (Revisited Sfifo) 
•  We generate the memory reference using randomize 

function. 
• Maintain a table and associate counter with each calling 

memory reference. Parallel we fit it into the 
corresponding ‘set’ 
 According to          
 

• If the new reference is called then its counter value will 
be zero (0). 

• If the duplicate reference is called then its counter value 
will increment by one (1). 

• If the corresponding ‘set’ is full and we have to replace 
the element then which element goes into replacement 
are decided with the following:- 

• If the counter value is zero then go in FIFO manner. 
• If the counter value is greater than zero (and it is same 

for all) then also go in FIFO manner and the 
corresponding counter value will become zero. 

• If the counter value is different for all the element in the 
set that mean it is a case of second chance , then firstly 
we replace the new reference with that  reference whose 
counter value is less in the particular set. 

• Now we decrement the counter value of the second 
chance element by 1. 

 
B. Experimental result analysis: 

For the implementation of the proposed cache replacement 
policy, here we used a high level language which is JAVA. 
Now firstly we have to generate a various random number 
as memory reference which is used for the evaluation of the 
cache performance. 
Here we are showing our results in two categories which are 
based on size of random number sets. 
Firstly we go through size of 100 random number after that 
we go for size of 200 random number which is compared on 
the number of misses occur in proposed replacement policy 
and the existing policy. 

 
• Case 1 Firstly we generate random number of size 100 

using    Random function. On the basis of these random 
numbers we analyze these results and maintain in the 
form of table. 

 
Table I. Comparisons among FIFO, SFIFO and Revisited 
SFIFO 
 

 Sr. No. Number of 
Set  

Number of 
misses in 

FIFO  

 Number of 
misses in 
SFIFO  

 Number of 
misses in 
Revisited 
SFIFO   

1        Set 
1 

97 97 96 

2 Set 2 98 97 97 
     3 Set 3 97 97 96 

4 Set 4 96 96 95 
5 Set 5 94 93 93 
6 Set 6 96 95 95 
7 Set 7 97 97 94 
8 Set 8 94 93 90 
9 Set 9 95 94 92 

10 Set 10 97 97 96 

86
88
90
92
94
96
98

100

set
1

set
2

set
3

set
4

set
5

set
6

set
7

set
8

set
9

set
10

N
um

be
r o

f M
iss

Set of 100 Random Number

FIFO SFIFO REVISITED SFIFO

 

Figure 1. Comparisions among FIFO, SFIFO and Revisited SFIFO 

 

A mod S = i 
 



Komal Agrahari et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 750-752 

© 2015-19, IJARCS All Rights Reserved                    752 

The above algorithm which is used in our proposed 
replacement policy uses the combination on set associativity 
as well as the advance version of second chance FIFO and 
the basic concept of FIFO (first-in-first-out). 
•  Case 2 we generate random number of size 200 using    

Random function. On the basis of these random numbers 
we analyze these results and maintain in the form of 
table.  

 
Table II. Comparisons among FIFO, SFIFO and Revisited 
SFIFO 

 
Sr. No. Number of 

Set  
Number of 
misses in 

FIFO  

 Number 
of misses 
in SFIFO  

 Number of 
misses in 

Revisited SFIFO   
1   Set 1 167 166 156 
2 Set 2 165 164 158 

     3 Set 3 146 145 142 
4 Set 4 156 155 149 
5 Set 5 165 164 152 
6 Set 6 169 165 161 
7 Set 7 162 161 153 
8 Set 8 166 165 155 
9 Set 9 159 155 151 

10 Set 10 156 155 150 

125
130
135
140
145
150
155
160
165
170
175

Set 
1

Set 
3

Set 
5

Set 
7

Set 
9 

N
um

be
r o

f M
is

s

Set of Random Number

FIFO

SFIFO

revisited SFIFO

 Figure 1. Comparisions among FIFO, SFIFO and Revisited SFIFO 

III. CONCLUSION 

 From the above discussion of both the table I and table III 
and based on the experimental results we can conclude that 
our proposed method (revisited SFIFO) has equivalent or 
better performance than the existing policies. Now we can 
say that the revisited SFIFO will be used for the future 
reference and give contribution in the field of cache 
performance. 

IV. ACKNOWLEDGMENT 

 Concentration, dedication, hard work and applications 
are essential but not the only factors to achieve the desired 
goals. It must be supplemented with guidance and 
cooperation of people to make it a success. Many people 
have given their precious ideas and valuable time to enable 
us to carry on the research paper. We are deeply indebted to 
all of them for their ideas and suggestions. We offer our 
sincere thanks to our dissertation guide Dr.P.K. Singh. 

 

V. REFERENCES 

[1]. Oluleye Olorode , Mehrdad Nourani 2015  “Improving 
Performance in Sub-Block Caches with Optimized 
Replacement Policies” ACM J. Emerg. Technol. Comput. 
Syst. 11, 4, Article 41 (April 2015).  

[2]. W. Stallings, "Computer Organisation and Architecture," 
Eighth Edition, 2011. 

[3]. Michail-Antisthenis I. Tsompanas, Christoforos Kachris, and 
Georgios Ch. Sirakoulis. 2016. “Modeling cache memory 
utilization on multicore using common pool resource game on 
cellular automata” ACM Trans. Model. Comput. Simul. 26, 3, 
Article 21 (January 2016). 

[4]. Nathan Beckmann, Daniel Sanchez, “Modeling Cache 
Performance beyond LRU” vol.no. 978-1-4673-9211-2/16 
©2016 IEEE. 

[5]. Mainak Chaudhuri, “Pseudo-LIFO: The Foundation of a New 
Family of Replacement Policies for Last-level Cache” ACM 
978-1-60558-798-1/09/12. 

 
 
 
 
 
 

 
 


	Introduction
	Proposed work
	Conclusion
	Acknowledgment
	REFERENCES

