
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 746

ISSN No. 0976-5697

Enhanced Approach for Cache Behaviour and Performance Evaluation

Manish Kumar Verma
Dept. of Computer Science and Engg

MMM University of Technology
Gorakhpur, Uttar Pradesh, India

Dr.P.K.Singh
Dept. of Computer Science and Engg

MMM University of Technology
Gorakhpur, Uttar Pradesh, India

Abstract: In previous research on cache replacement policies, have seen that a block usually becomes dead after some uses. By classifying the
dead block and discarding them early, there are various policies have been used but still there are number of problems such as cache pollution,
high cache miss rate and cache overhead existed which degrades the system performance. In this paper, a new approach for cache replacement
policy has introduced which reduces the cache miss rate and cache overhead by using shared L2 level cache. In terms of less miss rate and good
hit rate there is need to deploy effective replacement policies. Cache replacement techniques is one of the crucial design parameter that affects
the overall processor performance and also become more important with current growing technological moves in the direction of high
associative cache .
Keywords: Cache pollution; Cache overhead; Cache miss rate; Cache replacement policy (LRU and LFU); Memory overhead;

I. INTRODUCTION

The aim of this paper work is to enhance the performance
of the system through introducing a new cache replacement
policy which reduces the miss rate and also memory overhead.
Now after analysis the various cases of memory references with
new cache replacement policy we found that performance of
the processor is very much dependent on number of hits.
Cache memory have been introduced to improve the
performance and cost of the system in a computer
architecture.to improve the performance of a Cache memory in
terms of hit ratio and better response time, system needs to
employ efficient Cache replacement policy and all replacement
of blocks has been occurred in Cache memory. Cache is a high
speed memory contains most recently accessed pieces of main
memory. The structure of the paper is as follows: In Section1
we introduce the theory of cache memory. In Section2 we
present our proposed work with the steps which is followed by
us to achieve the objective. In section 3 we present the case
study and analyse the performance of calculated method with
respect to the conventional method. In section4 we conclude
the paper. And at last we go for various references which I
gone through. Cache memory bridges the gap between CPU
and main memory. Increasing Cache Size gives the better
performance but it is very costly. It is necessary because, the
time it takes to bring an instruction into the processor is very
long when compared with the time to execute the instruction.
Cache memory helps to decrease the time it takes to move
information to and from processor. Cache memory improves
the system performance by following a concept of locality of
reference. Localities of reference is defined as with reference to
the hierarchy design, CPU performs the read and write
operations only on a reusable data space (Cache
memory).locality of reference categorized into two parts-

a) Temporal locality
b) Spatial locality

Temporal locality-The meaning of temporal locality is
defined as the same word in the same block is referenced by the
CPU in a near future.

Spatial locality- The meaning of spatial locality is defined
as the adjacent words in the same block is referenced by the
CPU in a sequence.

Whenever a new block from main memory is brought into
the cache memory, and that time cache is full then it is

necessary to replace the existing blocks of cache memory. For
this approach we require cache replacement policies. To
provide instruction and data which is reside in main memory to
the processor at the high speed it can process them is one of the
important challenging aspect. For achieving high speed
processing, a better cache replacement policy must be
implemented. A number of policies have been introduced. For
maximum hit rate a good cache replacement algorithm must
have characteristics such as,

• Less memory overhead.
• Faster access to data.
• Less response time.

 Cache memory performance is evaluated on the basis of hit
rate, miss rate, miss penalty, and average memory access time.
Miss Rate is defined as the part of memory accesses that are
not present in the cache while hit rate is the part of memory
access that is present in the cache. Miss Penalty is defined as
the total number of cycles CPU is stalled for a memory access
determined by the sum of Cycles (time) to replace a block in
the cache, upper level and Cycles (time) to deliver the block to
the processor.

The memory design in the uniprocessor system was based
on easier component, made up of some levels of cache
memory, which provide data and instruction to single
processor. But the processors with multicore system [4], caches
are just a component of memory design; here the other parts
involve consistency model, cache coherence support and
interconnection within same chip. In multicore processors
every core of a processor consists of every components of an
individual processor such that registers, ALU, pipeline
hardware, control unit and L1 data caches and instruction. In
addition to several numbers of cores, multicore chips also
involve L2 and sometimes L3 cache also [2]. There are
basically three parameters in multicore organization are the
number core on the chip, levels of cache memory and amount
of the shared cache memory. Fast development of
semiconductor technology makes it possible that the embedded
system can gain the features of high-performance,
miniaturization, and diversification. To enhance the inter -
processor communication speed and the system performance,
Chip Multi-processor architecture is generally used nowadays.

Every processor uses dedicated L1 cache for its own cache
and L2 cache for shared cache memory [3] in on-chip
multiprocessor architecture as given in Fig. 2. Sharing Cache

Manish Kumar Verma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,746-749

© 2015-19, IJARCS All Rights Reserved 747

L2 not only provides prevention of the copy of hardware
resource but also provide high utilization. If processor unable
to access to its private cache L1 and shared cache L2 is used for
accessing the external memory. As there is increase in access
time which results in degradation of system performance. In
chip multiprocessor architecture, cache pollution has negative
influence on cache performance. It also caused by bad
prediction of any processor which increment the cache miss
rate due to cache pollution problem ,several cache replacement
policies such as random, FIFO,LFU and LRU has been used
[3].Random replacement policy replaces the cache items
randomly and FIFO replaces which was first loaded. They
remove despite the item used frequently LRU replaces the
shortcoming.

Fig1. Structure of on chip multiprocessor with L1, L2 cache
and external memory [1]

II. PROPOSED WORK

 In this work our contribution is to increase the hit rate,
decreases the cache pollution and overhead of the memory with
making some changes in the existing model which is LRU
(least recently used). We have proposed a cache replacement
policy to minimize the cache miss rate in shared L2 cache is
described. In order to reduce the speed-up gap between CPU
(central processing unit) speed and main memory performance,
in current generation computers, memory hierarchy
implemented by keeping registers inside, cache is on the chip
and off the chip and virtual memory on the hard disk. With
reference to the hierarchy design CPU performs the read and
writes operation only in the cache memory. In this process CPU
checks the availability of the data block in the cache. The
performance is balanced in computer architecture via cache
memory. In terms of less miss rate and good hit rate there is
need to deploy effective replacement policies. . Cache
replacement techniques is one of the crucial design parameter
that affects the overall processor performance and also become

more important with current growing technological moves in
the direction of high associative cache .There are various cache
replacement policies such as first in first out(FIFO),least
recently used(LRU) [5],least frequently used(LFU),optimal
page replacement in all these policies LRU is best in terms of
more hit rate and less miss rate. Others are degrading the
performance of the system. But still there are more challenges
present in LRU policy that’s why we are going to implement a
new policy which is modified version of existing policy such as
LRU. For this new approach we have follow some important
steps for which it will clear the how the procedure going on.
These steps such as:

A. Steps of Proposed Replacement Policy

• Firstly we take frame table which is limited in size.
• For counting the number of times a particular block of

table is reference and store the counting value a
counter is associated with each block.

• As we know initially cache misses occur and if cache
is empty then we place new block at the top of the
table, simultaneously we increment the counter value
by one which is associated with that block.

• If cache is not empty then we calculate the threshold
value by using the below formula threshold value

(Thv) = value/
• In the next step we continue the above step 3 and step

4 till the table size.
i. If counter value is greater or equal to the

calculated threshold value (Thv) then we do
nothing.

ii. Otherwise we take a temporary table and
transfer the label of blocks which has
counter value less than threshold value
(Thv) and apply LRU only on the
temporary table and replace the existing
reference with new coming references.

• After that remove the labels from temporary table and
finally update cache memory with counter value.

Now on the basis of the above steps, we can draw an algorithm
which we follow for our proposed policy that is shown below:

B. Algorithm of Proposed Policy

Algorithm (ELRU)
If (cache Hit)
{
Increment the counter value corresponding reference set
and sort the cache block on the basis of counter value.
}
Else if (cache miss)
{
If (cache is empty)
{
Place the new block at the top of stack and increment the
counter value by one.
}
Else
{
Calculate the threshold value (Thv)

= value/
For (i=0 to stack size)
{
If (counter value >=Thv)

Manish Kumar Verma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,746-749

© 2015-19, IJARCS All Rights Reserved 748

Do nothing
Else
{
Take a T.T and transfer the label of block which has less
counter value than Thv and apply LRU policy only on T.T
and replace existing reference with new incoming
reference.
}
At last remove the labels of T.T and finally update cache
memory with counter value.
}
}

To implement our proposed cache replacement policy we

have to use java programming language which is also known as
high level language and its platform environment initially
released by Sun Microsystems. Further to implementing our
proposed method platform to be used such as NetBeans which
is well known software development platform. Further to
implementing our proposed method firstly we have calculated
the performance of our approach by generating a random
reference string using Rand Function, between definite ranges.

Case 1:

fx = Random between (1,20)

17,9,14,16,12,4,13,1,4,11,4,5,5,11,8,9,5,1,13,6,11,14,6,7,12,16,
11,8,2,3,13,2,12,10,18,16,14,19,7,11,3,2,7,8,14,2,16,6,11,12,16
,17,1,18,17,4,15,11,1,5,14,16,18,10,10,16,13,3,8,17,7,7,4,2,9,1
7,12,10,16,10,16,9,14,9,11,7,17,17,12,15,11,19,13,13,4,15,17,1
3,15,18,9,13,14,15,19,11,11,6,14,6,19,15,7,19,15,19,16,13,1,14
,7,19,6,7,9,14,19,8,11,17,18,4,16,9,7,9,11,10,3,15,17,19,19,16,
6,5,8,9,15,19,12,10,16,1,4,4,14,8,8,9,17,9,5,4,19,18,3,13,13,6,1
3,16,19,5,2,5,11,18,19,5,7,1,7,8,12,6,17,11,4,14,1,13,5,18,14,6,
13,15,9,11

Using the above method we generate the various random
numbers of sizes 200 in terms on number of sets which is
shown in the table. The table shows the evaluation of the
number of hits in the existing policy which is compared with
our proposed methodology corresponding to the particular sets.

Table. I Comparison between LRU replacement policy and
proposed replacement policy with set size 200

Set no. Number of hits

LRU
cache

replacement
policy

Proposed
cache

replacemen
t policy

Set 1 37 39

Set 2 41 43

Set 3 47 54

Set 4 43 53

Set 5 48 50

Set 6 38 38

Set 7 43 43

Set 8 45 50

Set 9 39 42

Set
10

34 42

Fig 2.Graphical representation of the above given data sets in
the table

Case 2:

Now we show that how the number of hit increases when
we are going to increase the size of random number and
reduces the range of random number as 1 to 20. Memory
references are given as:

fx = Random between (1,20)

2,7,15,15,9,13,19,13,13,6,11,17,16,8,3,14,7,10,13,17,15,9,1

0,4,18,14,7,10,13,17,15,9,10,4,18,14,8,2,2,6,5,5,1,15,12,2,13,9,
16,11,14,13,15,5,13,7,3,4,16,6,16,3,2,12,9,16,3,1,6,5,7,7,6,19,6
,6,7,15,3,9,16,7,12,3,12,17,10,12,2,2,6,12,15,6,10,17,14,5,10,6,
4,4,6,1,1,17,17,6,15,12,18,16,4,10,2,3,11,19,19,4,3,3,8,19,7,1,1
6,11,9,13,1,12,2,19,18,14,17,16,8,3,3,19,6,3,9,14,8,13,16,1,5,9,
14,17,6,18,2,14,4,9,12,4,4,4,10,18,11,6,19,16,3,13,14,9,1,15,1,
17,6,1,2,16,6,13,11,2,1,12,2,3,18,19,13,6,16,12,16,1,13,6,2,10,
11,1,16,13,11,10,13,10,4,7,7,3,11,19,12,9,7,17,10,10,10,13,7,1
0,11,18,4,12,19,18,13,11,7,17,6,9,11,2,15,14,11,7,4,14,14,16,3,
19,11,10,15,3,12,10,14,1,17,9,9,19,2,3,11,6,14,10,16,3,12,1,14,
12,10,14,11,1,15,11,15,8,4,15,19,11,1,16,7,8,1,5,8,11,6,7,13,7,
17,18,7,11,10,2,15,9,4,7,17,11,15,19,11,15,3,8,1,9,2,16,4,6,4,1
9,5,18,3,12,5,11,1,5,18,18,1,18,7,13,7,1,18,1,18,18,3,18,7,10,4,
13,4,19,8,2,4,6,13,5,14,7,4,11,13,3,2,19,7,1,5,6,5,8,5,13,1,16,1
3,18,7,7,9,10,9,1,10,4,9,16,2,6,6,8,13,10,13,19,19,13,2

Using the above method we generate the various random
numbers of sizes 400 in terms on number of sets which is
shown in the table. The table shows the evaluation of the
number of hits in the existing policy which is compared with
our proposed methodology corresponding to the particular sets.

Manish Kumar Verma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,746-749

© 2015-19, IJARCS All Rights Reserved 749

 Table. II Comparison between LRU replacement policy and
proposed replacement policy with set size 400

Set no. Number of hits

LRU
cache

replacement
policy

Proposed
cache

replacemen
t policy

Set 1 89 89

Set 2 80 94

Set 3 87 88

Set 4 82 89

Set 5 74 82

Set 6 82 84

Set 7 80 81

Set 8 81 81

Set 9 86 95

Set
10

81 84

0

20

40

60

80

100

set
1

set
2

set
3

set
4

set
5

set
6

set
7

set
8

set
9

set
10

N
o.

 o
f H

its

Set with 100 Random number generation

Comparison between LRU
Replacement policy and proposed

Policy

LRU

Proposed LRU

III. CONCLUSION

As many concept were given in this topic which will helpful
for us in the field of cache optimization. From the above
discussion and based on the experimental results we can
conclude that our proposed method (proposed LRU) has better
performance than LRU. And we can say that proposed LRU
the will be used for the future reference and give contribution
in the field of cache performance.

IV. ACKNOWLEDGMENT

The satisfaction that accompanies that the successful
completion of any task would be incomplete without the
mention of people whose ceaseless cooperation made it
possible, whose constant guidance and encouragement crown
all efforts with success. I am grateful to my guide Dr.
P.K.SINGH for the guidance, inspiration and constructive
suggestions that helped me in the preparation of this progress
report. I wish to thank my parents who have been always been
a source of inspiration for their never-ending support and love
throughout completion of the report and I am also thankful my
friends who have helped in successful completion of the partial
report.

V. REFERENCES

[1]. W. Stallings, "Computer Organization and

Architecture," Eighth Edition, 2011.
[2]. S. Kumar, P. K. Singh, “An Overview of Hardware

Based Cache Optimization Techniques,” International
Journal of Advance Research in Science and Engg, vol.
no. 4, Special Issue (01), September 2015.

[3]. Fu, John WC, and Janak H. Patel. "Data prefetching in
multiprocessor vector cache memories." ACM
SIGARCH Computer Architecture News, Vol. 19. No. 3.
ACM, 1991.

[4]. H Khatoon, S. H. Mirza, T. Altaf, “Aware Cache
Optimization Techniques for Multi Core Processors”,
2011 Frontiers of Information Technology.

[5]. Cantin J. F, Hill M. D., Cache Performance of
theSPECCPU2000Benchmarks,http://www.cs.wisc.edu/
multifacet/misc/spec2000 cachedata.

Fig 3.Graphical representation of the above given data sets in
 the table

	Introduction
	PROPOSED WORK
	CONCLUSION
	Acknowledgment
	References

