
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 723

ISSN No. 0976-5697

 Improving Design of Library Management System using Design Patterns

Pankhuri Jain, Sourav Shaw, and Manjari Gupta*
Department of Computer Science, Institute of Science,

Banaras Hindu University, Varanasi, India

Abstract: Designing a system is perhaps the most critical factor affecting the quality of the software. No design methodology reduces the process
of design to a sequence of mechanical steps. It only provides guidelines to aid the designer during the design process. Fortunately, GOF [2] and
other researchers proposed many design patterns that give us solution of general design problems. Design decisions of experienced designers are
recorded in form of design patterns. Thus each design pattern focuses on a particular object-oriented design problem or issue. If these design
patterns are used by a novice designer, the obtained system design would be much better. In this paper, we designed a very simple library
management system using object oriented approach without design patterns. All the defects are shown and this design is improved using few
design patterns. We used three design patterns: Factory, Facade and Template Design Patterns in this study.

Keywords: System Design, Design problems, Design Patterns, Façade, Factory, Template

I. INTRODUCTION

Demand of software has been increasing day by day.
Therefore, there is more demand for software development
paradigm that improves quality and productivity of software
development. A Design pattern [1]

Problem Statement and Analysis: We have taken a very
simplified version of library management system that

manages the catalog of a library. It performs functions such
as managing book transaction and creating user. It also
include function that enable users to search their resources
in library. To analyse and understand the system under study
we will develop a model using object-oriented approach.
“Fig. 1” shows the static structure of the program to be
developed using this design. Whenever MemberRecord
class requests for a book, Librarian class instantiates an
instance of Book class, issuing it to the requesting
MemberRecord. Also, MemberRecord pays the Bill created
by Librarian.

is a general repeatable
solution to a commonly occurring problem in software
design. A design pattern isn't a finished design that can be
transformed directly into code. It is a description or template
for how to solve a problem that can be used in many
different situations. They guarantee the creation of
transparent structures which allow software to be easily
understood, extended, and reused. The description of design
patterns [2] provides information about the structure, the
participant’s roles, the interaction between participants and,
above all, the intent for which they should be used. In this
paper, we will be implementing design patterns in library
management system to improve its design that is obtained
without using design patterns. We choose the Library
management system as a domain because of its simplicity.
Further we designed the system for few requirements to
show the objective of use of design patterns in design for
improvement.
In the next section, we will explain the system under study-
Library Management System, its design without using
design patterns and defects in this design. In section 3, we
will describe three design patterns: Factory, Facade and
template design patterns that are used in this work to
improve the design. How the design proposed in section 2 is
improved using these three design patterns are shown in
section 4. Lastly we conclude in section 5.

II. LIBRARY MANAGEMENT SYSTEM

The system design shown in “Fig. 1” is quite complex and
unreadable. Class diagram of Library management system
creates a lot of duplication as multiple instance of Book
class are instantiated with same property and different
attributes such as Textbook, Journal and Magazine. Further,
Librarian need to know details of Book class, hence there is
tight coupling between these two classes creating
inflexibility. Also, MemberRecord is exposed to complex
details of the system further reducing modifiability. Hence,
design pattern would be utmost solution for handling
arrangement of system code, but it would also make code
reusable. So, we would use design patterns to make it
flexible and more understandable. We identified the scope
of use of three design patterns described in the next section.
In the book class multiple classes such as magazine, journal
and textbook are required to be created thus it would be
better to use here factory design pattern. We can use facade
design patterns to reduce the exposed complexity to
MemberRecord class. Further to differentiate different types
of members like students, teachers, non teaching staffs we
can use template design pattern. In the next section these
three patterns are described in little detail.

Manjari Gupta et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 723-727

© 2015-19, IJARCS All Rights Reserved 724

Fig.1 Class diagram of Library Management System

III. DESIGN PATTERNS: FACTORY, FACADE AND

TEMPLATE
The factory pattern is one of the patterns that is frequently
used in Java programming. It is categorized as creational
pattern i.e the pattern involving in creating objects. The
factory pattern creates object without exposing the creation
logic to the user and it will also refer to the new created
object using interface [5]. The factory pattern is used in the
book class because multiple classes such as magazine,
journal and textbook need to be created and also it prevents
the code in the subclasses to be written everywhere in the
different classes repeatedly. UML diagram of factory pattern
is shown in “Fig. 2”.

Fig.2 Factory Design Pattern [3]

Facade is one of the easiest patterns to implement. Typically
this pattern is used to either hide the implementation of the
underlying classes it is presenting an interface for, or to
simplify the underlying implementation of something that
may be complex. A facade may present a simple interface to
the outside world, but under the hood do things like create
instances of books, manage transactions -- all stuff that you

can be shielded from by the simplified interface [6]. UML
diagram of Façade design pattern is shown in “Fig. 3”.

Fig.3 Façade Design Pattern [4]

Template pattern is a behavioural pattern. It defines skeleton
of an algorithm in an operation, and defer some steps to
subclasses. Template pattern defines a main MemberRecord
template and this main MemberRecord template has sub
classes. UML diagram of Template design pattern is shown
in “Fig. 4”.

Fig.4 Template Design Pattern [2]

Manjari Gupta et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 723-727

© 2015-19, IJARCS All Rights Reserved 725

IV. IMPROVING THE EARLIER PROPOSED
DESIGN USING DESIGN PATTERNS

First, the book class is modified to become an abstract class
and a set and get method is written in the class for every
instance declared. A function named displayBookDetail() is
declared in the book class as well for the factory class to

access. Then, other subclasses such as magazine, journal and
textbook class is inheriting to it. Next, a factory class named
“BookFactory” is created and a method named retrieveBook
with a String parameter is declared. Therefore, whenever the
librarian class need to obtain the information from the book
class, it needs to request from the factory class first. The
“Fig. 5” shown refined class diagram.

Fig.5 Modified class diagram with Factory Pattern

First, the LibraryFacade class is created which is related to
all other classes. A function named requestBook() with
String parameter and payBill() are declared in the
LibraryFacade class. Therefore, whenever the
MemberRecord class needs to request book, it would request
from the LibraryFacade class first. LibraryFacade handles
rest of complexity viz requesting the librarian, referring the
transaction and paying the bill. The “Fig. 6” shown refined
class diagram.
First, the MemberRecord class is modified to become an
abstract class and a set and get method is written in the class
for every instance declared. Then, other subclasses such as
student and faculty class inherits from MemberRecord. It is
used here to basically isolate different members based on

their type (student, faculty). The “Fig. 7” shown refined
class diagram.
The Factory Design Pattern encapsulate the object creation
process and also prevents the code in the subclasses to be
written everywhere in the different classes repeatedly. It
makes object creation process reusable for the entire
application. It hides the implementation detail of Book from
librarian. Factory Design Pattern is one of the most
frequently used design pattern across multiple technologies
and framework. It also avoids errors introduced by
redundancy. Using Factory Design Pattern allows one to
return one factory object among a family of factory objects.
Therefore, it is a detailed design pattern and more efficient
as well as easily understood by anyone and mostly used in
OOPS concepts for implementation.

Manjari Gupta et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 723-727

© 2015-19, IJARCS All Rights Reserved 726

Fig.6 Modified class diagram with Facade Pattern

Fig.7 Modified class diagram with Template Pattern

V. CONCLUSION

In this paper, we have proposed design of library
management system with and without design patterns. We
have shown few problems in design proposed without using
design patterns. This design is then improved using three
design patterns: factory, facade and template design

patterns. To improve the design firstly we added factory
pattern to delegate responsibility of issuing book to
BookFactory. Then, facade pattern is implemented to hide
the complexities of entire system and provide interface to
user, using which the user can access the system. Finally,
template pattern is applied to isolate different Member
Record, which have same property but different attributes.

Manjari Gupta et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 723-727

© 2015-19, IJARCS All Rights Reserved 727

VI. REFERENCES

[1] Pfleeger, S.L.: Software Engineering: Theory and Practice,
2nd edn. Prentice Hall, Englewood Cliffs (2001)

[2] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: elements of reusable object-oriented software.
Addison Wesley, Reading (1994)

[3] http://www.dofactory.com . (2017). Available at:
http://www.dofactory.com/net/design-patterns

[4] https://www.tutorialspoint.com. (2017)

 [6]

. Available at:
https://www.tutorialspoint.com/design_pattern/facade_pattern

[5] www.tutorialspoint.com. (2017). Design Pattern Factory
Pattern. [online] Available at:
https://www.tutorialspoint.com/design_pattern/factory_pattern
.htm
www.stackoverflow.com. (2017) Design Pattern Facade
Pattern. [online] Available at:
http://stackoverflow.com/questions/4798184/what-is-the-
point-of-a-facade-in-java-ee

http://www.dofactory.com/net/design-patterns�
http://www.stackoverflow.com/�
http://stackoverflow.com/questions/4798184/what-is-the-point-of-a-facade-in-java-ee�
http://stackoverflow.com/questions/4798184/what-is-the-point-of-a-facade-in-java-ee�

