
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

481© 2015-19, IJARCS All Rights Reserved 481

ISSN No. 0976-5697

Optimizing the Performance of Quadratic Search using Memorization

Deepti Verma and Dr. Kshama Paithankar
Department of Computer Science

Shri VaishnavSM

 Institute of Management,
Indore, India

Abstract: Time is the most important feature that counts for an executing process. Nowadays, applications are more focused to reduce the
computational time and thus to increase the speed. Therefore, there is a need to redesign the fundamental algorithms especially for searching
methods to achieve this objective. Targeting this, approach of memorization is proposed in this paper to optimize the time of searching during
execution. It is an optimization technique used to eliminate re-execution time for pure function. A novel approach of memoized Quadratic
Search Algorithm is presented in this paper. Results show remarkable improvement in the performance in terms of time leading to achieve the
said objective. This will help to optimize the time in other respective areas of computation processes.

Keywords: Binary Search, Quadratic Search, Optimization, Memoization, Execution Time.

1. INTRODUCTION

Searching is a method which is used in every area especially in
the applications of computer science where huge data is stored.
As the size of the data increases, time for the searching a
particular record also increases. There exist many searching
techniques which allow faster retrieval of data such as Linear
Search, Binary Search, Interpolation Search etc. and having
pros and cons of individual method with respect to different
situations [1]. A modification in the classical Binary Search is
proposed in the form of Quadratic Search that reduces the
complexity and is an improved searching resulting in faster
search [2].

Optimization is a technique which is used in every area either
to save time or to maximize the profit or output. In Computer
Science also, this is used in different way to get the required
favorable output. Particularly for the programming it is used by
technique called memoization.

Memoization is used for optimization particularly to speed up
the computer programs [3]. It is a special case of optimization
which basically saves the time by storing the result of the
expensive function call’s result, which can be further used
without recompilation, wherever and whenever required.
Memoization is also known as function caching. It was first
introduced in 1968 in the context of Artificial Intelligence [4].
It is a way for machines to learn from the past experiences. In
other words, programs could “recall” previous compu tations
and thus avoid repeated work [5, 6]. The key idea behind this is
to speed up the execution of a function by maintaining the
cache of its previous computations and look-up into the cache
instead of computing data again and again.

Normally, if a function is being called more than once, it will
execute its computational code and store result of each
iteration. It is time consuming and also directly affects memory
utilization. By using memorization, a process verifies whether
the calling function is called for the first time. If it is so, it will
be executed normally. From the next time, the results will be
looked-up in the cache. As a result, Memoized function may
reduce the redundancy, computational time and thus the

execution time [7, 8]. Here, an algorithm of Quadratic Search
with the memoized approach using algorithm MemQS() is
proposed to optimize the searching time.

In Section 2, background and related work is discussed briefly.
Non-memoized and proposed memoized algorithms are
presented formally in Section 3 and Section 4 respectively.
Section 5 includes the output considering the different cases.
Comparison of performance of memoized and non-memoized
quadratic search algorithm is discussed in Section 6. Finally,
Section 7 covers conclusion with limitations and future scope.

2. BACK GROUND AND RELATED WORK

Different types of searching techniques are available which are
applicable for different kinds of applications, and some are
highly specialized to specific tasks. For instance, Linear
Search is used for searching within unsorted data whereas
Binary and Interpolation Search are used for the already sorted
list [2, 9]. Modification in the traditional searching methods is
required for increasing the efficiency and effectiveness of the
algorithm. Hence, a new approach of search with a
modification in the classical Binary Search is proposed termed
as Quadratic Search method [2]. Though it performs better
than Binary Search in terms of time, possibility of further
optimization has been observed clearly.

3. QUADRATIC SEARCH

Non-memoized Quadratic Search
Quadratic search is a modified form of Binary Search that
works on Divide and Conquer method. Here, Searching is
done by comparison with the centre position value as well as
with its quarter’s position value. Its centre position is
calculated by FIRST+LAST/2.
Its quarter’s positions are calculated as

P1 = FIRST+(LAST-FIRST)/4;
P2 = FIRST+(LAST-FIRST)3/4;

The Algorithm has four conditions after calculating MID, P1,
P2, when the key is not found at the middle, P1 and P2 :
Condition 1 : IF KEY < Middle and also < P1

Means Key is found in first quarter

Deepti Verma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 481-484

482© 2015-19, IJARCS All Rights Reserved 482

then (P1

-1) will become the LAST and the procedure will
be repeated.

Condition 2 : IF KEY < Middle and > P1

Means Key is found in second quarter
Then (P1

Condition 3 : IF KEY is > Middle and < P

+1) will become the FIRST and (MID-1) will
become the LAST and the procedure will repeated.

2

Then (MID+1) will become the FIRST and (P

Means Key is found in third quarter

2

-1) will
become the LAST and the procedure will repeated.

Condition 4 : IF KEY > Middle and also > P2

.
Means Key is found in second quarter
Then (P2

+1) will become the FIRST and the procedure

will repeated.
Pictorial representation of the Quadratic Search Method is
shown in Figure-1.

Figure-1: Diagrammatic representation of the Quadratic
Search Process

Formal Description of non-memoized Quadratic Search
Quadratic Search is a method for searching through ordered
random data[1]. It is retrieving a desired record by key in an
ordered file by using the value of the key and the statistical
distribution of the keys. It works on Divide and Conquer
method [9]. Here, the algorithm NMQS() is presented.

Algorithm NMQS()

/*arr[] represent the data set*/ /*n1
contains the size of data set*/
/*key is the key value to be searched */
/* first and last holds the first and last index position value of
array*/
/*mid is a class partition value*/
/*P1 and P2

 are hold the first quarter and the second quarter
partition position values*/
Start
Step 1: int Quadratic_Search (int arr[], int key, int FIRST ,

int LAST)
/*Function declaration with the parameters of data set and key
value and the limits of data set.*/

Step 2: first = 1; last = n;
/* initializes first with 1 and size of data set is stored in last.*/

Step 3: While(FIRST<=LAST)

Step 4: MID = (FIRST+LAST)/2;
/* find middle position*/

P1

 = FIRST+(LAST-FIRST)/4;
/* find first quarter position*/

P2

 = FIRST+(LAST-FIRST)*3/4;
/* find second quarter position*/

Step 5: If(KEY==A[MID] || KEY==A[P1] ||
KEY==A[P2

]) return element found; /*

Search Successful and key found at middle
position*/

Step 6: Else if(KEY<A[MID] && KEY<A[P1])
LAST=P1

/* key lies in the first quarter*/
-1;

Step 7: Else if(KEY<A[MID] &&

KEY>A[P1]) FIRST=P1
LAST=MID-1;

+1;

/* key lies in the second quarter */

Step 8 Else if (KEY>A[MID] &&

KEY>A[P2]) FIRST=P2
/* key lies in the third quarter */

+1;

Step 9: Else if(KEY>A[MID] && KEY<A[P2])

FIRST=MID+1; LAST=P2
/* key lies in the fourth quarter */

-1;

Step 10 Return element not found

End

4. MEMOIZED QUADRATIC SEARCH

Formal Description of memoized Quadratic Search
This memoized algorithm accepts the value entered by the
user and verifies the output of non-memoized quadratic search
function NMQS() [10]. If the value is found, it will store in an
integer variable, and whenever needed extracts the output
stored in a variable namely val with the help of memoized
function. The output of memoized and non-memoized
algorithm may not always same. It varies on the execution
process of the system that how much time it will take to fetch
the value from the cache.
Instead of variable, if hash-table or vector is used to store data,
it may take large amount of time to process because hash-table
and vector are inbuilt classes of util package and use their own
functions to store and fetch the value.

Algorithm MemQS()

/* v is an integer type variable for determining
successful search*/

/* st1 and ed1 are integer type local variables*/
/* b is an integer type local variable used to retrieve output*/

Start
Step 1: st1=Systemtime /* to stores starting time */

Step 2: b=d1.memoIps(); /* Retrieving output */

ed1=Systemtime; /*getting ending time */

Step 3: tot1=(ed1-st1);

Message ("Memo Time "+tot1);
/*Showing total time with
memoization*/

Step 4: if (v==1)

Message ("Value Found= "+b);
/*When the value is found then show the output with time*/

Deepti Verma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 481-484

483© 2015-19, IJARCS All Rights Reserved 483

Step 5: int memoSearch()

Step 6: return val;

End

5. CASE STUDY

The performance of proposed algorithm MemQS() and that of
NMQS() has been evaluated using three cases. Case 1 includes
the study for data size 10 whereas Case 2 deals with data size
as 25. Data size 50 was considered for study in Case 3. These
different cases have been studied for the NMQS() as well.

Case 1: Data size 10
Here, the performance of NMQS() and MemQS() is discussed
with the list containing 10 values. Table-1 illustrates the
performance in terms of time whereas Figure-2 represents the
trend of time including that memoized function improve the
performance consistently.

Table-1: Dataset of 10 values (Values from 10 to 100)

 Non-memoized Memoized

SearchValue Time Time Difference

10 1370 1359 11

20 3623 1359 2264

30 2265 1358 907

40 3171 1359 1812

50 3170 1359 1811

60 3170 1359 1811

70 2717 1359 1358

80 3171 1358 1813

90 3170 1359 1811

100 3170 1358 1812

NotFound 3623 1359 2264

Figure-2: Performance of MemQS() vs NMQS() in Case 1

Case 2: Data size 25
In this Case, the list of dataset containing 25 values is
experimented with proposed MemQS() and NMQS() as well as
shown in Table-2. Similarly, Figure-3 represents the trend of
time. In this Case increasing the size of the dataset also results
in improving time and thus the performance of algorithm
using memoization.

Table-2: Dataset of 25 values (Values from 10 to 250)

Search Non- Memoized Difference Range
Value memoized Time

 Time
50 3170 1358 1812 10-100
60 3623 1359 2264 10-100

120 3623 1359 2264 100-150
140 4076 1359 2717 100-150
160 3623 1359 2264 150-200
190 2717 1358 1359 150-200
210 3170 1812 1358 200-250
240 3623 1359 2264 200-250
220 3170 1359 1811 random
80 3623 1359 2264 random

Not Found 4076 1812 2264

Figure-3: Performance of MemQS() vs NMQS() in Case 2

Case 3: Data size 50
A list containing 50 values for implementing NMQS() and
MemQS() is used in this Case. Table-3 highlights the
outcome in terms of time and Figure-4 represents the trend
of this time. Here, it is observed that the performance of
MemQS() still follows the trend of optimization of time to
improve performance of searching.

Table-3: Dataset of 50 values (Values 10 to 500)

Search Non- Memoized Difference range
Value memoized Time

 Time

50 5435 1359 4076 10-100

80 4076 1812 2264 10-100

110 3623 3170 453 100-200

200 4076 1359 2717 100-200

250 2717 1359 1358 200-300

290 4076 1358 2718 200-300

320 2623 1359 1264 300-400

380 4076 1811 2265 300-400

430 4076 1359 2717 400-500

470 3623 1359 2264 400-500

450 3623 1358 2265 random

480 3623 1359 2264 random
not

found 4529 1358 3171 Not Found

Deepti Verma et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 481-484

484© 2015-19, IJARCS All Rights Reserved 484

Figure-4: Performance of MemQS() vs NMQS() in Case 3

6. DISCUSSION

With the help of three cases, it has been noticed that MemQS()
really improves the performance of searching as compare to
regular NMQS(). For instance, in Case 1 the time recorded to
search the first element is 1370 ms using NMQS() whereas
using MemQS() it is noted 1359 ms thereby reducing the time
by 11 ms clearly as shown in Table-4.

Table-4: Comparative Performance in different Cases

ca Index Search Non Memoized Time Difference
se Value Memoized

 Time
1 First 10 1370 1359 11

 Mid 50 3170 1359 1811

 Last 100 3170 1358 1812

2 First 50 5435 1359 4076

 Mid 160 3623 1359 2264

 Last 240 3623 1359 2264

3 First 50 5435 1359 4076

 Mid 290 4076 1358 2718

 Last 470 3623 1359 2264

Figure-5: Cumulative bracket of MemQS() and NMQS()

Similarly, for mid element, time recorded is 3170 ms using
NMQS() and in MemQS() it is 1359 ms. Here, time is reducing
by 1811 ms and in the case of last element the searching time
is recorded using NMQS() is 3170 ms where as using
MemQS() it is computed as1358 ms thereby reducing by 1812
ms. This trend is observed in Case 2 and Case 3 also as
represented by Figure-5. Presently, the performance of
MemQS() is evaluated for first, middle and last elements of the
lists. However, the trends of performance indicate that it may
surely be applicable for the element at any position in the list.

7. CONCLUSION

A proposed memoized Quadratic Search is faster than known
Quadratic Search method. Since memoization itself is an
optimization technique, here also it proves to be effective
Technique of optimizing time. Irrespective of the index,
memoized Quadratic Search takes consistent time. The
proposed algorithm may be verified for the large databases.
Recursive implementation may be applied for further
optimization.

8. REFERENCES

 [1] Kumar, P. “Quadratic Search: A New and Fast Searching
Algorithm (An extension of classical Binary search strategy),
International Journal of Computer Applications (0975 – 8887)

 Volume 65, Issue14, March 2013
[2] Horowitz,E. and Sahni,S.: Fundamental of Data Structure

Rockville, MD: Computer Science Press, 1982.
[3] Purey J., Paithankar K. Memoization: a Technique to optimize

Performance of Searching, National Conference on “Challenges
of Globalization and Strategies for Competitiveness” Shri
aishnav Institute of Management, Indore, January, 2015, pp
486-491.

[4] Norvig, P. “Techniques for Automatic Memoization with
Applications to Context-Free Parsing”, University of
California,Volume 17, Issue1, March 1991, pp 91-98 .

[5] Pfeffer, A. “Sampling with Memoization”, School of Engineering
and Applied Sciences, Harvard University, 2007.

[6] Ziarek, L; Sivaramakrishnan,K.C.and Jagannathan, S. “Partial
Memoization of Concurrency and Communication”, Department
of Computer Science Purdue University, Proceedings of the 14th
ACM SIGPLAN International Conference on Functional
Programming, Edinburgh, Scotland, ACM, pp 161–172.

[7] Brown,.D. and Cook, W. sR. “Monadic Memoization Mixins”,
Department of Computer Sciences, University of Texas at
Austin, 2006.

[8] Purey, J. and Muley, K. “Auto Response Memoization using
JAVA”, National Conference on Emerging Technologies in
Electronics, Mechanical and Computer Engineering (ETEMC)
April 2010.

[9] Demaine, E.D.; Jones, T. and Patrascu,M. “Interpolation Search
for Non- Independent Data”, Proceedings of the 15th

[10] Verma, D. and Paithankar, K. Interpolation Search: A Memoized
Aproach International Journal of Latest Trends in Engineering
and Technology, Nov 2016, pp 218-224

 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA) , 2004,
pp 529–530.

