
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 136

ISSN No. 0976-5697

Understanding the compliance of Refactoring with Maintenance

Sandeep Bal

Research Scholar, IKG-PTU,
Jalandhar, Punjab, India

Sumesh Sood
Asst. Prof.,Department of Computer Applications,

IKG-PTU Campus, Dinanagar, Punjab, India

Abstract: It is a belief that it is harder to maintain a code than writing a new code. The software maintenance comes into picture after the code
has been delivered. The purpose of maintenance is to remove bugs, improve performance and design and adding new features to the existing
system. The process of Refactoring helps in improving software’s internal structure without altering its external behaviour. It is also a part of
Maintenance activity. Another belief is that Refactoring improves software design by making it more extensible and flexible. This paper
presents a study of the case studies already performed in order to show the compliance of Refactoring activity with the Maintenance Phase.

Keywords: Software Maintenance, Refactoring, Quantification.

1. INTRODUCTION

There are many direct and indirect quality attributes of
reusability like adaptability, completeness, maintainability,
and understandability [1]. Refactoring helps in enhancing
particularly maintainability and understandability [2], [3].
The idea is to analyze whether refactoring enhances
reusability by analyzing its impact on some of the internal
reusability metrics proposed and validated in the work of
Dandashi et al. [1]. A restricted set of internal product
attributes are used in order to assess reusability [4]. When
you talk about the Refactoring Process, there are three
important roles: the developer, the analyst, and the manager.
The developer analyzes the program source code to find
which parts to be refactored in order to start the refactoring
process. The analyst then examines and organizes these
refactoring candidates in terms of the cost and effect. The
developer is also responsible for the application of program
refactorings, and validation of the functional equivalence
before and after refactoring. Those refactorings are given by
the analyst after he/she validates the cost and the effect of
the refactorings.
After the developer has identified refactoring candidates, it
is the analyst who selects appropriate refactorings. The
analyst is also responsible for the cost and effect estimation.
The estimation result is to be given to the manager who is
responsible for the quality of the final product. Given the
global strategy of the manager, the analyst deploys the
strategy into program refactorings. Those refactorings are
validated against the estimated cost
and effect, and then passed to the developer who is
responsible for the implementation. Given the selected
refactorings, the project manager must make strategic
decisions taking the cost–effect aspect into consideration. At
this stage, cost and effect estimations are two major key
activities to make the decision. There are several traditional
and effective quantitative methods to estimate the cost for
software development including program modification. On
the other hand, the effect estimation requires high–level
knowledge of the program in question and its structure, and
there are few methods to quantify the effect. It is very
important to provide an appropriate strategy of refactoring
because it will affect both the software development process

and software itself. Proper cost–effect trade–off estimation
and considerable prioritization are essential in this phase.
In order to perform best suited refactoring following are the
three phases of Program refactoring Process:
1. Identification of refactoring candidates
2. Validation of refactoring effect
3. Application of refactoring

A quantitative evaluation method has been proposed [5] for
measuring the maintainability enhancement effect of
program refactoring. The comparison between the coupling
before and after the refactoring of a program has been
performed for evaluating the degree of maintainability
enhancement.

2. EVALUATING THE IMPACT OF REFACTORING

ON REUSABILITY

The approach proposed by Dandashi and Rine [1] is
followed in [4] where two different sets of metrics are used:
• One for micro level measurements (measurements at a
method level).
• And one for macro level measurements (measurements at a
class level).

McCabe’s cyclomatic complexity of a method [6] and the
number of Java statements per method are used for the
micro level measurements whereas the Chidamber and
Kemerer (CK) set of object-oriented metrics [7] are used for
the macro level measurements. To arrive at a measure for
the whole class, the highest measure is used as a
representative measure of the corresponding class measure.
 The motivation for choosing this set of metrics is twofold:
First, some of them such as the CK metrics are among the
best-understood and validated metrics for object oriented
systems and therefore we can be more confident in their
expressiveness [8].Second, the tool we use for collecting
these metrics is able to collect them in an automatic and
non-invasive way - a fundamental requirement for data
collection in an XP process [9]. Several empirical studies
put the CK metrics into relationship with software quality
and reusability. Li and Henry [10] for example show that the
CK metrics are useful to predict maintainability. Basili et al.

Sandeep Bal et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,136-140

© 2015-19, IJARCS All Rights Reserved 137

[8] investigate the relationship between the CK metrics and
code quality: Their findings suggest that 5 of the 6 CK
metrics are useful quality indicators. However, such studies
are rare in XP-like environments and they do not analyze
how the evolution of the CK metrics during development is
affected by refactoring. Table 1 summarizes the metrics
used in this research as indicators for reusability.

Table 1: Internal Product Metrics

Metric Name Level Definition

MAX_LOC Class
Maximum no. of Java
statements of all methods in
a class

MAX_MCC Class
Highest McCabe’s
cyclomatic complexity of all
methods in a class

CBO Class Coupling Between Object
classes(CK)

LCOM Class Lack of Cohesion in
Methods(CK)

WMC Class Weighted Methods per Class
(CK)

RFC Class Response of a Class(CK)
DIT Class Depth of Inheritance Tree
NOC Class Number of Children

The approach analyzes the changes in the metrics mentioned
in the table during development. A set of candidate classes
which are considered for reuse are chosen at the first place.
Afterwards, the daily changes in the reusability metrics for
each class during development are noticed. The average of
these daily changes with the change each class gains after
refactoring are mentioned at the final step.
This approach helps in quantifying the impact of refactoring
on reusability metrics compared to their overall evolution
during development.

A bit more formally the method can be defined as follows.
Let Mi ∈ M={MAX_MCC, MAX_LOC, CBO, RFC,
WMC, DIT, NOC, LCOM} be one of the reusability metrics
listed in Table 1. The daily changes are averaged as the first
step for each candidate class over the whole development
period without including days when the class has been
refactored. It is denoted as ΔMi

. N in equation below is the
total number of development days; Δt is a time interval of 1
day and R is the set of all days during which developers
have refactored a particular class.

ΔRi and ΔMi values are computed and compared in order to
assess the improvement scope of reusability of a class while
refactoring it. Here ΔRi denotes the average of the daily
changes of reusability metric Mi only for the days (k ∈ R)
in which a class has been refactored. Either the negative
value of ΔRi or lower value than ΔMi suggests that
refactoring improves reusability metric Mi

 compared to its
standard evolution during development.

The Case Study: This case study helps to analyze the
promotion of ad-hoc reuse by refactoring in a software
project developed using an agile, XP-like methodology [11].
To collect the metrics listed in Table 1, PROM [12] has been
used which extracts a variety of standard and user defined
source code metrics from a CVS repository. A checkout of
the CVS repository is performed on daily basis where the
values of the CK and complexity metrics are computed and
stored in a relational database. It includes the daily evolution
of the CK metrics, LOC and McCabe’s cyclomatic
complexity.
This study has been conducted on a commercial software
project developed in Java at VTT in Oulu, Finland. The
project delivers the required product, a production
monitoring application for mobile, Java enabled devices on
time and on budget. The development process followed a
tailored version of the Extreme Programming practices [11].
The software consists of 30 Java classes and a total of 1770
Java source code statements (denoted as LOC).
The design of the developed system is based on the MVC
pattern [13], the Broker architectural pattern and several
standard design patterns described in [14].
Total five candidate classes denoted as A, B, C, D and E has
been selected and computed in a first step the daily changes
of the metrics for each of them omitting the days when they
have been refactored. The average of these changes for all
days in which a class has been refactored has been computed
afterwards. Table 2(a) and 2(b) shows the results after
calculating the following for each metric and candidate
class: the average changes during development (without
refactoring), ΔMi

, the average changes induced by
refactoring.

Table 2: Average daily changes of reusability metrics in
case of refactoring (ΔR) and development (ΔM).

Class CBO RFC WMC LCOM
 ΔM ΔR ΔM ΔR ΔM ΔR ΔM ΔR

A 0 0 0 1 1 -1 0 -1
B 1 -4 1 -4 0 0 0 0
C 1 0 2 -5 4 0 1 0
D 1 -1 1.4 -2 2 0 1 0

E 1 -1 3.5 -2 2 3 0 0

Class MAX_MCC MAX_LOC DIT NOC

 ΔM ΔR ΔM ΔR ΔM ΔR ΔM ΔR
A 0 -1 0 0 0 0 0 0
B 1 0 2 -2 0 0 0 0
C 3 0 6 -46 0 0 0 0
D 3 -2 0 0 0 0 0 0

E 1 0 10 -20 0 0 0 0

The interpretation of the numbers in Table 2 is
straightforward:
1. A minimum of two reusability metrics for every
candidate class can be seen improving significantly after it
has been refactored (compared to the average evolution

Sandeep Bal et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,136-140

© 2015-19, IJARCS All Rights Reserved 138

during development). E.g. Class A and E both provide
general interfaces to the user interface and database and they
might/can be reused in a similar application.
2. On the other hand, the metrics related to inheritance and
cohesion are not at all or only in a negligible way changed
by the refactorings applied in the project because of not
using deep inheritance hierarchies. Therefore, it is quite
obvious that no refactoring dealing with inheritance has
been applied (it was not necessary to restructure code due to
complexity caused by inheritance).
3. The CBO and RFC metrics show the highest benefit of
refactoring as they express the coupling between different
classes and the complexity of a class in terms of method
definitions and method invocations. It is believed that these
two metrics are strong indicators for how difficult it is to
reuse a class: A high value of RFC makes it difficult to
understand what the class is doing and a high value of CBO
means that the class is dependent on many external classes
and difficult to reuse in isolation. Both situations prevent it
from being easily reused. For three out of the five candidate
classes refactoring improves significantly both the RFC and
CBO values and as such clearly makes them more suitable
for ad-hoc reuse.
4. Refactoring seems also to lower method complexity: In
all the classes either the method with the maximum lines of
code or the one with the highest cyclomatic complexity have
gained a notably improvement after refactoring. Again,
classes with less complex methods are easier to reuse.

3. A QUANTITATIVE EVALUATION METHOD FOR

MEASURING THE MAINTAINABILITY
ENHANCEMENT:

The refactoring process consists of three major
subprocesses, which are the identification of refactoring
candidates, the validation of refactoring effect, and the
application of refactoring [5]. Following are some key
aspects of these subprocesses:

1. Improvement Planning
It includes organization of refactorings and selection of
refactorings to be applied after identifying the program
points which are to be refactored i.e. to identify refactoring
candidates.

2. Improvement Validation
It consists of three different validations with their own
objective such as the verification of the functional
equivalence before and after the refactoring at the developer
level, the validation of the intended effect at the analyst
level and the cost–effect trade–off at the manager level.

3. Improvement Execution
It includes the ordering of each refactoring according to the
priority in terms of cost–effect trade–off by the analyst and
the actual code modification by the developer. It is basically
the implementation of refactoring to the target program.

Table 3: Status of Refactoring Process Support
Subprocess Activity Support

Planning
Bad-smell detection Partly
Bad-smell analysis Partly
Refactoring planning Partly

Validation
Plan evaluation No
Refactoring validation No
Functional equivalence validation No

Execution Refactoring deployment No
Refactoring application Partly

Some effective approach is required to support the
Validation subprocess as it is visible in Table 3 also. The
support in Validation subprocess will help the project
managers for developing the software in enhancing their
projects’ maintainability efficiently.
The evaluation of refactoring effect to support the plan
evaluation and refactoring validation (Validation Subprocess
in Table 3) can be seen as follows:

 Evaluate Refactoring Effect
3.1 Definition of Refactoring Effect
Following steps are taken in order to evaluate the refactoring
effect:
1. Selection of an appropriate maintainability quantification
metrics.
2. Measurement and comparison of metrics before and after
refactoring.

There have been many distinguished previous works on the
software maintainability quantification [8][15][16][17]. The
maintainability of each part of a program is desired for
refactoring purpose rather than the whole program.
Following are the few aspects of maintainability of a
program.
Coupling: Generally speaking, decreasing the coupling
among modules enhance the system maintainability.
Cohesion: Modules of high cohesion are easier to maintain
than those of low cohesion.
Size and Complexity: Simple and small modules are easy
to maintain.
Description: Appropriate naming rule helps us to
understand the program.

The focus here is on refactoring method that enhances the
maintainability of a method in terms of coupling i.e.
reduction of coupling among methods such as “Extract
Method,” “Extract Class,” or “Move Method.” The coupling
metrics have been measured before and after those
refactorings and the metrics values are compared to quantify
those refactoring effects in terms of maintainability
enhancement. Java and a method have been used as
examples of a programming language and a unit of a part of
a program respectively.

3.2 Definition of Coupling
The coupling between methods definition has been
especially customized for object-oriented programming
languages like Java where inter–class coupling coefficients
and coupling type coefficients have been introduced and the
coupling can be classified into the following three major
categories:

Sandeep Bal et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,136-140

© 2015-19, IJARCS All Rights Reserved 139

3.2.1 Return value coupling
When method A uses a return value from method B, it is
said that A has a return value coupling with B or else, when
method A provides a return value to method B, it again is
said that A has a return value coupling with B. The whole
return value coupling of method A can be defined as a total
of those related values. Hence the return value coupling of
A, or C rv

(A) has been defined as follows:

where,

ρ(A): a set of methods whose return value is
used by A,

Krv

=1 when m is in the same class as A,

(m): return value coupling inter–class
 coefficient,

=κrv
σ(A): a set of methods that use A’s return value.

>1when m is in different class,

Krv(m) has been introduced to reflect that an inter–class
coupling could be a greater maintenance obstacle more than
an intra–class coupling. Hence κrv

(>1) coefficient is applied
to inter–class parameter couplings.

3.2.2 Parameter coupling
When method A receives n parameters from method B, it is
defined that A has n parameter coupling with B or else,
when method A passes m parameters to method C, it can be
defined that A has m parameter coupling with C. The whole
parameter coupling of method A can be defined as a total of
those related values. Hence parameter coupling of A, or
Cpp

(A)can be defined as follows:

where,
 ζ(A): set of methods that invoke A,

ξ(A): set of methods that are invoked by A,
 Kpp(m): parameter coupling inter–class
 coefficient,
 = 1 when m is in the same class
 as A,
 = κpp > 1 when m is in a
 different class,

 pm: # of parameters of m.

Kpp(m) has been introduced for the same reason as Krv(m)
has been introduced.

3.2.3 Shared variable coupling
When method A uses n class/instance variables in common
with another method B, it is said that A has n shared
variable coupling with B.
The whole shared variable coupling of method A can be
defined as a total of those related values. Hence we define
shared variable coupling of A, or Csv

(A) as follows:

where,

χ(A): a set of methods that use class/instance
variables in common with A,

Ksv

= 1 when m is in the same class as A,

(m): shared variable coupling inter–class
coefficient,

= κsv
vm: number of class/instance variables

appearing both method A and method m in
common.

> 1 when m is in a different class.

Ksv(m) has been introduced for the same reason as Krv

(m)
has been introduced.

3.3 Combining Three Couplings
Three coefficients KTrv , KTpp, and KTsv

 have been prepared
for the parameter coupling, the shared variable coupling, and
the return value coupling, respectively. It has been done for
combining these three coupling metrics into one in order to
evaluate the maintainability of a certain method. The
following inequality relationship has been assumed among
them:

0<KTrv≤ KTpp < KTsv (KTrv + KTpp + KTsv

 = 1)

The whole coupling metrics value for the method A
CT

 (A) is then calculated in the following formula:

CT (A) = KTrvCrv(A) + KTppCpp(A) + KTsvCsv

(A)

The Experiment
An old maintained software project written in C++ has been
chosen to evaluate the theory. The maintainability of the
software has been much deteriorated. Many bad–smells in
terms of coupling metrics were found by applying
Refactoring Assistant to the software. An interview was also
conducted for the developers of the program to recognize
the most serious problems in terms of maintainability. Five
problems were identified afterwards and then refactoring has
been applied to each of these five problems.

3.3.1 Case 1: Extract Method (1)
In this case, the original method indicated very high
coupling with many other methods including the ones in
other classes. The developer admitted that the method
should be divided into at least two parts: one for
manipulating instance variables to update the object’s state
and the other for collecting required information from other
objects. Therefore the developer applied Extract Method
refactoring.

3.3.2 Case 2: Extract Method (2)
This case also showed rather high inter–class parameter
coupling and intra–class shared variable coupling. The
solution has been applied anyway only to find that the
refactored code was no more maintainable enough than the
original one.

3.3.3 Case 3: Extract Class (1)
In this case, the original method indicated very high shared
variable coupling with many other methods in the same
class. The method dealt with four instance variables all of
which performed very similar roles to one another. Actually

Sandeep Bal et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,136-140

© 2015-19, IJARCS All Rights Reserved 140

those four instance variables all together prescribe a certain
state of the object. Hence the developer decided to introduce
a new class to manage those four instance variables together
with appropriate methods to manipulate them.

 3.3.4 Case 4: Extract Method (3)
The method in question is a check method which traverses
two instance variables. Those two instance variables are
very similar to each other and so are the ways to traverse
them. The developer therefore extracted a traverse method.
The extraction separated the original method into two parts:
one for the query part and the other for the traversing
.
3.3.5 Case 5: Extract Class (2)
The original method accessed twelve instance variables. The
developer had realized that some encapsulation should be
applied to those instance variables which access a number of
other methods not only in the same class but in many
different classes. A new class has also been introduced that
deals with those instance variables and provides methods to
access/update those values. As a result, the extracted class
became responsible for the shared variable coupling and the
method in question became almost free from the shared
variable coupling.

Table 4: Refactoring Experiment Results

Case Sbj. Before After(Effect) Average(Effect)

1 B 10.4 2.8(7.6) 3.6(6.8)
2 C 12.1 9.0(3.1) 8.3(3.8)
3 B 25.2 9.0(16.2) 9.0(16.2)
4 B 26.4 1.7(24.7) 13.8(12.6)
5 A 126.0 26.0(100.0) 28.3(97.7)

Following coefficient value for the target system were
chosen:

κrv = 1.5, κpp = 2.0, κsv = 3.0
KTrv = 0.2, KTpp = 0.2, KTsv

The second research method evaluated the refactoring effect
in terms of the degree of maintainability enhancement of a
target program.

 = 0.6
The result of the experiment can be seen in the Table 4. The
subjective evaluations of the refactoring effectiveness by the
developer is shown in column “Sbj”. The corresponding
values are out of A, B, C which means:

A: considerably effective
B: somehow effective
C: not necessarily effective.

The coupling metrics value of the target method before and
after the refactoring can be seen in the column “Before” and
“After (effect)” respectively.

4. CONCLUSION

It can be concluded from the case study of internal metrics
that Refactoring improves significantly important internal
measures for reusability of object-oriented classes and it has
a positive effect on reusability.

5. REFERENCES

[1] Dandashi, F. (2002, March). A method for assessing the
reusability of object-oriented code using a validated set of
automated measurements. In Proceedings of the 2002 ACM
symposium on Applied computing (pp. 997-1003). ACM.

[2] Du Bois, B., Demeyer, S., & Verelst, J. (2004, November).
Refactoring-improving coupling and cohesion of existing
code. In Reverse Engineering, 2004. Proceedings. 11th
Working Conference on (pp. 144-151). IEEE.

[3] Ratzinger, J., Fischer, M., & Gall, H. (2005). Improving
evolvability through refactoring (Vol. 30, No. 4, pp. 1-5).
ACM.

[4] Moser, R., Sillitti, A., Abrahamsson, P., & Succi, G. (2006).
Does refactoring improve reusability?. In Reuse of Off-the-
Shelf Components (pp. 287-297). Springer Berlin Heidelberg.

[5] Kataoka, Y., Imai, T., Andou, H., & Fukaya, T. (2002). A
quantitative evaluation of maintainability enhancement by
refactoring. In Software Maintenance, 2002. Proceedings.
International Conference on (pp. 576-585). IEEE.

[6] McCabe, T. J. (1976). A complexity measure. Software
Engineering, IEEE Transactions on, (4), 308-320.

[7] Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite
for object oriented design. Software Engineering, IEEE
Transactions on, 20(6), 476-493.

[8] Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A
validation of object-oriented design metrics as quality
indicators. Software Engineering, IEEE Transactions on,
22(10), 751-761.

[9] Disney, A. M., & Johnson, P. M. (1998, November).
Investigating data quality problems in the PSP. In ACM
SIGSOFT Software Engineering Notes (Vol. 23, No. 6, pp.
143-152). ACM.

[10] Li, W., & Henry, S. (1993, May). Maintenance metrics for the
object oriented paradigm. In Software Metrics Symposium,
1993. Proceedings., First International (pp. 52-60). IEEE.

[11] Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T.,
Jäälinoja, J., Korkala, M., ... & Salo, O. (2004, October).
Mobile-D: an agile approach for mobile application
development. In Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications (pp. 174-175). ACM.

[12] Sillitti, A., Janes, A., Succi, G., & Vernazza, T. (2003,
September). Collecting, integrating and analyzing software
metrics and personal software process data. In Euromicro
Conference, 2003. Proceedings. 29th (pp. 336-342). IEEE.

[13] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., &
Stal, M. (1996). {Pattern-oriented Software Architecture
Volume 1}.

[14] Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995).
Design patterns: Elements of reusable object-oriented
software. Reading: Addison-Wesley, 49(120), 11.

[15] Bril, R. J., & Postma, A. (2001). An architectural connectivity
metric and its support for incremental re-architecting of large
legacy systems. In Program Comprehension, 2001. IWPC
2001. Proceedings. 9th International Workshop on (pp. 269-
280). IEEE.

[16] Bengtsson, P. (1998, August). Towards maintainability
metrics on software architecture: An adaptation of object-
oriented metrics. In First Nordic Workshop on Software
Architecture, Ronneby.

[17] Wake, S., & Henry, S. (1988, October). A model based on
software quality factors which predicts maintainability. In
Software Maintenance, 1988., Proceedings of the Conference
on (pp. 382-387). IEEE.

