
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

REVIEW ATICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 29

ISSN No. 0976-5697

A Review Paper on Software Defined Networking

Sumit badotra
Department of computer Science and Engineering
Shaheed Bhagat Singh State Technical Campus

Ferozepur Punjab, India

Japinder Singh
Department of computer Science and Engineering
Shaheed Bhagat Singh State Technical Campus

Ferozepur Punjab, India

Abstract: The comprehensive concept of SDN(Software Defined Networking) has introduced the extensive change to the traditional networks
with the integration of the network by decoupling the forwarding hardware (data plane) from the control logic of the network (control
plane).Software Defined Networking (SDN) is a new way of technology that is helping to overcome the limitations of traditional networks. With
the help of this emerging technology paradigm has created a great future, an expectation to overcome the need for reliable, secure, flexible and
well management of next generation networks. The basic idea behind it is the separation of control plane from data plane. SDN has made the
Networks more programmable. SDN is a three layered architecture. OpenFlow Protocol is the most common protocol used for providing the
interface called as Southbound APIs between control layer and physical layer. On the other hand interface provided in between application layer
and control layer is called as Northbound APIs. All the intelligence is lying in control layer. Controller acts as a brain of the network which is
configuring and managing the flow of network through network devices present in physical layer. This paper illustrates the introduction about
Traditional networks, Software Defined Networking its architecture, interfaces popular controllers, mininet emulation tool used in SDN, its
topologies and security threats in SDN.

Keywords: Software Defined Networking, Data plane, Control plane, Network Function Virtualization, Open Network Foundation, Type-
Length-Value

I.INTRODUCTION

 Today computer networks are very complex as more and
more devices are increasing day by day along with the content
they access. The kind of equipment used in networks like
Intrusion Detection system,switches,firewalls,Load balancers
are typically very hard to manage by network administrator
individually, the solution for this is Software Defined
Networking. It has changed the way we used to manage the
networks. The two main basic principles of Software Defined
Networking (SDN) are 1) It separates the control plane from
data plane (control plane contains the intelligence, control
logic while data plane contains the physical infrastructure or
low level network elements that are used for packet
forwarding and switching) 2) Control plane acts as a brain of
the network which has a direct control over the Data plane, all
the elements in the Data plane can be manipulated as per the
needs, there is no need to configure each and every element of
data plane individually. Network Function Virtualization
(NFV) and Software Defined Networking (SDN) complement
each other, although they do not depend upon each other
[1].For designing, managing and decoupling networking
services Network Function Virtualization (NFV) is used. The
network functions such as Domain Name Services (DNS),
Network Address Translation (NAT), and Intrusion Detection
System (IDS) etc. are decoupled by the NFV from propriety
hardware appliances as they can run in software [1].For
providing the multiple services to the customers, service
provider has to implement the multiple virtual network
function (VNF) instead of single virtual network function
(VNF) ,the new concept came where multiple virtual Network
Function(VNF) are providing services through concatenation
is called as service chaining after this Quality of Service (QOS)
is the issue to handle in for [1]. NFV standardization
committee is ETSI NFV group. On the other hand SDN is an
emerging technology which separates central logic from its

infrastructure. SDN can be centrally managed and dynamic
changes can be made, it is cost effective and easy to use. It is
founded by Open Networking Foundation (ONF) group.

II.BACKGROUND

 In the traditional networks as shown in fig.1 both control
plane and data plane are coupled inside the proprietary
hardware. In a dedicated appliance network functionality is
mainly implemented, ‘dedicated appliance’ refers to one or
multiple switches, routers and/or application delivery
controllers. Within this appliance Most of the functionality is
implemented in dedicated hardware only and for this purpose,
Application Specific Integrated Circuit (or: ASIC) is often
used [2].

Fig.1 a) Traditional networks b) SDN approach is implemented

A. Limitations of Traditional Networks:

• Network configuration was time consuming and
Fickle: Whenever an IT administrator needs to add or
remove a single device in a traditional network many
steps are needed. Firstly the manual configuration of
multiple devices used in the network like switches,

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,29-36

© 2015-19, IJARCS All Rights Reserved 30

routers, firewalls etc.The next step which he has to
follow is to update numerous configuration settings,
such as ACLs, VLANs and Quality of Service using
device-level management tools. This configuration
approach makes it that much more complex for an
administrator to deploy a set of policies which are
consistent [2].

• Multiple vendors: As there includes multiple
physical devices in traditional networks so it implies
for multiple vendor environment which ultimately
needs high level of expertise and extensive
knowledge of all the devices present in the network.

• Distributed control plane: The intelligence of the
network resides in the control plane in case of
traditional networks it is residing in multiple places
because of coupling of both data plane and control
plane in network devices. It becomes very difficult to
manage the network for a network administrator as
configuration was a bit complex [2].

Table 1 comparison of Traditional networking and SDN

Traditional Networking Software Defined

Networking
Inflexible and static
networks.

They posses flexibility
and agility.

These networks are
logically distributed.

These are centralized.

Protocols are used for
their working.

Different APIs
(Application
programming interface)
are used such as
Northbound APIs,
Southbound APIs etc.)

Custom ASICs and
FPGAs are used.

Merchant silicon is used.

Packet forwarding and
high-level routing is done
on the same device.

In this OpenFlow switch
separates the control path
and data path.

Configuration of switches
used in it is done through
command line.

SDN controller uses
OpenFlow and gives you
an interface to program
the switched.

III.SDN ARCHITECTURE

As shown in Fig.2. SDN is a three layered architecture; the
main layer is control layer because controller resides in it, and
controller acts as a brain to the network because it manages the
flow of traffic from switches using flow tables.

A. Features of SDN architecture are as follows:

Programmability is Direct: Because it is decoupled from
forwarding functions network control is directly
programmable [3].

 Agility: Dynamically adjusting network wide traffic flow to
meet network changing needs is easily achieved.

 Management of network is central: Network intelligence
is (logically) centralized in software-based SDN controllers
that maintain a global view of the network, which appears to
applications and policy engines as a single, logical switch.

 Configuration is programmable: SDN lets network
administrators to secure, configure, manage and optimize
network resources very fast via dynamic, automated SDN
programs, which they can be written by themselves because
there is no more dependency on proprietary software [3].

 Open standards-based and no more vendor-dependency
:Through open standards when SDN is implemented ,it makes
the network design and operations performed in a very simple
manner because most of the instructions instead of multiple
vendor-specific devices protocols ,are provided by SDN
controllers(like POX,Ryu,OpenDaylight etc.)[4].

All three layers are dependent to each other and
communicate with one another through some interfaces. The
best advantage of SDN architecture is that it provides
abstraction view of entire network for the applications it
provides; this makes the network even more “Smarter”.

B.SDN Architecture contains the following three layers

• Application Layer: It is composed of the
applications which are communicating with controller
in control layer through some interfaces called as
Northbound APIs.The commonly used API in
providing Northbound API is REST (Representation
State Transfer) API. Applications in SDN can be like
Firewall, Load balancer etc [5].

• Control Layer: It is the middle layer of the SDN

architecture and constitutes the SDN controller which
acts as a brain of the network and has a global view
over the network also known as Control plane.

• Physical Layer: It contains the infrastructure used in

the network like switches, also known as Data plane.
They provide packet forwarding and packet switching.
Switches only perform the actions according to the
controller. The interface they use to communicate
with controller situated in control layer is called as
Southbound APls. The most common protocol used
in providing Southbound APIs is OpenFlow Protocol
[5].

Fig.2 SDN Architecture

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,29-36

© 2015-19, IJARCS All Rights Reserved 31

C. Network Interfaces used in SDN:

 As discussed earlier also SDN is a 3-layered architecture top
layer includes the high level instructions, controller resides in
middle layer and the third layer constitutes all the physical &
Virtual switches used in the network. Within a network each
control device is equipped with some interfaces (one or more),
every control device is able to communicate with other
components through these interfaces. A network interface is a
software or protocol which provides the communication
medium through its interface between two equipment’s or
computer networks. The two types of API’s used in SDN are
as follows:

• Southbound Application programming interface

(API): The communication between control layer and
physical layer is done through this interface. For this
many protocols are used like OVSDB, NETCONF,
SNMP etc. but mainly OpenFlow protocol is used, it
provides the programmatic control of forwarding
rules from the data path given by network elements
present in the physical layer. OpenFlow protocol is
used in providing the interface between control layer
and physical layer its first specification was created in
2008 by Stanford University. The first version of
OpenFlow, managed by ONF (Open Network
Foundation)was 1.1 then they released another
version 1.2 in February 2011,most recent version of
this is 1.4,as a southbound API it has to be
implemented in both sides(control layer and physical
layer) called as OpenFlow Switch. OpenFlow Switch
is a switch which is actually managed by SDN
controller. It consists of 1) Group Table. 2)
OpenFlow Table. Switches are also of two types1)
OpenFlow only (operations used in this are
OpenFlow only, all packets are processed by the
OpenFlow pipeline.2) OpenFlow-Hybrid (it uses both
Ethernet switching operations and OpenFlow
operations). Fig.2 shows the overall workflow in
OpenFlow Switch used in communicating and
providing interface between control layer and
physical layer [6].OpenFlow switch are implemented
in both the layers as well. Easy deploying, switching
protocols new routing technique can be implemented
using OpenFlow switch. In high security networks it
can be used.

• Northbound Application programming interface

(API): The communication between control layer and
application layer is done through this interface.
Applications using OpenAPI’s information about the
network state could be asked by the applications and
further this Network control measures can be applied
by the applications if they find it necessary. For
example REST API (Representational State Transfer)
is a software based architecture style for building
scalable web services. Northbound API provides
routing, security, data path computation & other basic
network functions.

• Westbound Application programming interface
(API): This interface acts as a channel for providing
the interface between SDN control plane and different
network domains [6]. Network state information and

routing decisions for each controller is exchanged
through this. Inter domain routing protocols like BGP
are used.

• Eastbound Application Programming interface
(API): communication is done from control plane to
non SDN domains. Depends upon the technology used
in non SDN domains its implementation is
proportional [6].

 The OpenFlow protocol is the most commonly used
protocol for the southbound interface SDN, which separates
the data plane from the control plane. OpenFlow was initially
proposed by Stanford University, and it is now standardized
by the ONF. OpenFlow is an open interface for remotely
controlling the forwarding tables in network switches, routers,
and access points.

 OpenFlow architecture constitutes the three basic concepts.

1. With the help of OpenFlow-compliant switches (that
compose the data plane.) network is built.

2. More than one OpenFlow controller is constituted in
control plane of SDN network.

3. A secure control channel connects the switches with
the control plane [7].

D. OpenFlow Switch:

 An OpenFlow-compliant switch is a network’s basic
forwarding device. According to its flow table it forwards the
packet to its destination. This flow table includes a set of flow
table entries, each of which consists of match fields, counters
and instructions, as illustrated in Figure 3.1. Flow table entries
are also called flow rule or flow entries.

 Fig.2

 The header fields in a flow table are the first entry which
describes that which packets this entry is applicable in for.
Constitution of a wildcard-capable match over specified
header fields of packets is included in it [7]. For faster packet
forwarding with the help of OpenFlow, ternary content
addressable memory (TCAM) is required by the switch that
allows the fast lookup of wildcard matches. Depending on the
OpenFlow specification, e.g., Ethernet, IPv4, IPv6 or MPLS.
The header fields can match different the above stated
protocols.

 Collection of statistics about flows is reserved by the
counters. The number of received packets and bytes, as well as
the duration of the flow is stored by these counters only.

 How the packets of that flow are handled is decided by the
actions [7]. Some common actions are ―forward drop,
―modify field, etc.

E. OpenFlow Controller

 A software program in SDN, called the controller, it is
responsible for manipulating and populating the flow tables of

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,29-36

© 2015-19, IJARCS All Rights Reserved 32

the switches and act as a brain of the network. By,
modification, insertion and removal of flow entries from the
flow table of switches the controller can modify the behavior
of the switches with regard to forwarding the packets. The
protocol that enables the controller to instruct the switches is
OpenFlow. For the purpose of communication the controller
uses a secure control channel.

 The three classes of communication exist in the OpenFlow
protocol those are followings:

• Communication between controller-to-switch: The
controller-to-switch communication is responsible
for, switch programming, information retrieval
feature detection and its configuration.

• Communication is asymmetric: without any request

from the controller asynchronous or asymmetric
communication is get started by the OpenFlow
compliant switch [8].It is used for the transfer of
information to the controller about state changes
packet arrivals, at the switch and errors occurred in
between.

• Communication is symmetric: Symmetric

messages are sent without any request from either
side of switch and controller both controller and
switch are free to start the communication without the
permission from the other side. To check whether the
control channel of network is still live or not a simple
message of hello or some other echo messages are
used to help in such cases are the examples of
symmetric communication [8].

Fig.3 OpenFlow work flow

F.OpenFlow protocol:

Various OpenFlow protocol versions are discussed and these
are as following:

• OpenFlow 1.0: The OpenFlow 1.0 specification was
released in December, 2009. The most commonly
deployed version of OpenFlow is this version of it.
Based on the source and destination address Ethernet
and IP packets can be matched. Specification of the
packet parsing and matching algorithm is done by it
[9]. The algorithm of packet matching starts with a
comparison in between the Ethernet and VLAN fields
and continues if necessary with IP header fields.

• OpenFlow 1.1: OpenFlow 1.1 was released in

February, 2011. A drastic changes compared to
OpenFlow 1.0 were contained by this version of

OpenFlow. In multiple flow tables a packets that
contain the information are now processed by a
pipeline. Two major alterations are introduced in this
and these are as follows:

• A group table
• A pipeline of multiple flow tables [9].

• OpenFlow 1.2: OpenFlow 1.2 was released in

December, 2011. It has come to include the advanced
support for protocol in particularly for IPv6.
OpenFlow version 1.2 can now match IPv6 source as
well as destination addresses, protocol number, flow
label number, various ICMPv6 fields and traffic
class. In additional matching capabilities now
vendors have new possibilities to offer or make
available OpenFlow by them to support in for.

• OpenFlow 1.3: OpenFlow 1.3 introduces new

features for monitoring and operations and
management (OAM). To a flow table entry a meter is
attached directly and the rate of packets assigned to
it is measured by its meter identifier. If a given rate is
exceeded with the help of meter band instead of
dropping all those packets from the network it may
optionally choose to recolor all those packets by
modifying their differentiated services (DS) field [9]
.Thus on OpenFlow 1.3 and later specifications a
simple or complex QoS frame works can be
implemented.

• OpenFlow 1.4: This was released in October 2013.

The support for the OpenFlow Extensible Match
(OXM) was enhanced by ONF. To the protocol TLV
structures for ports, tables and queues are added
.Previously defined hard-coded parts from earlier
versions and specifications are now replaced by the
newly defined TLV structures. Now it is possible to
have the configuration of optical ports. In addition to
it, now the control messages in a single message
bundle to all the switches can be sent by the
controller. There is a minor improvement in group
tables, flow eviction on full tables and feature of
monitoring the traffic flow is also included [9].

IV. CONTROLLERS IN SDN

 The vital element of SDN network is considered to be its
controller. It is a platform which manages the flow of control to
the routers and switches via Southbound OpenFlow protocol
and applications via Northbound APIs. A collection of
Pluggable modules is contained by controller which performs
different network tasks.

 Five most important commonly used controllers which are
opensource.POX[10],Ryu[11],Trema[12],Floodlight[13],Open
Daylight[14] apart from these above mentioned controllers
there are many others controller like Jaxon,NOX, Beacon,
Maestro etc. because of less usage and poorly documented
these controllers are not used.

• POX: It is developed and inherited from NOX
controller. POX is python based SDN controller.
• Pythonic OpenFlow interface.

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,29-36

© 2015-19, IJARCS All Rights Reserved 33

• Runs anywhere – Can bundle with installing-
free Py runtime for easy distribution.

• The similar visualization tools and GUI as
NOX are used. [10].

• RYU: It gives the component based platform for
SDN, for managing the network flow and
applications it uses different APIs. Ryu provides
software components with well defined API that
make it easy for developers to create new network
management and control applications. For managing
different network devices, such as OpenFlow,
Netconf, OF-config, etc. Ryu supports plenty of
protocols. About OpenFlow, versions 1.0, 1.2, 1.3,
1.4, 1.5 and Nicira Extensions all are supported by
RYU. Under the Apache 2.0 license all of these codes
are freely available.

• Trema: For developing different controllers which
use OpenFlow protocol for configuring and
connection to the network devices (switches, routers)
through Southbound APIs called as OpenFlow
Controller , Trema provides a framework (open
source) to them in the programming language like c
and ruby.

• Floodlight: It is a java based OpenFlow controller,
managed by ONF (Open Networking Foundation)
and licensed by Apache. It specifies a “Forwarding
instruction set” in which a remote controller can
make changes in network behavior through some
defined protocols through switch.

• OpenDaylight: It the largest open source SDN

controller, managed ONF (Open Networking
Foundation).A flexible common platform is provided
by OpenDaylight which serves many purposes like
Automated Service Delivery, NFV and cloud,
Network Visibility and control, Network Resource
Optimization [15]. Model-driven service abstraction
platform that allows users to write applications that
easily work across a wide variety of hardware and
south-bound protocols is provided by OpenDaylight.
The OpenDaylight Controller is able to deploy in a
variety of production network environments.
Upcoming protocols and other SDN standards are
supported by this modular controller. The
OpenDaylight Controller exposes open northbound
APIs, which are used by applications. The Controller
is used by the applications to collect information
about the network and then algorithms are run to
conduct analytics, and then again make use of
OpenDaylight Controller to create new rules
throughout the network. Within its own Java Virtual
Machine (JVM) OpenDaylight is kept and
implemented singly in software [15].

Fig.4 SDN Different Controllers

V.SOFTWARE DEFINED NETWORKING WITH MININET

 For the creation of a network of virtual hosts, switches,
controllers, and links in between them a network emulator is
used called a Mininet emulator. Standard Linux network
software is run by Mininet hosts, and mininet switches support
OpenFlow protocol for the purpose of communication and
highly flexible custom routing and ultimately creating
Software-Defined Networking. Mininet not only supports
research and development but it also aids in learning,
prototyping, testing, debugging and any other tasks .Instead of
having a real hardware with the help of mininet a complete
experimental network can be made on a laptop or other PC.

A. Working with Mininet:

Within a single machine emulation is done by mininet
with an OpenFlow network and end-hosts are connected
within the network. The built-in support to create
several common topologies (default and custom) is a
great feature of it. The construction of custom
topologies is done using a python script. The comfort,
advantage and authenticity is provided by the mininet at
very low cost. The substitute to Mininet is hardware test
beds which are agile, exact but due expensive and
shared nature cannot be used for all experiments.
Mininet is freely available open source software that
emulates OpenFlow devices and SDN controllers.
Simulation of SDN networks, a controller (POX, Ryu,
OpenDaylight etc.) for experiment is run by mininet.
Emulation of real world network scenarios is provided
by it and few of SDN controllers are by default
included with in Mininet VM,for using some other
controllers (as per the need) there installation is
required. With the help of Mininet ease usability,
scalability in the network and accuracy in performance
can be achieved.

 These following steps are to be followed for installing
Mininet emulator in your PC:

• Download the Mininet VM image.

• Downloading and installation of virtualization system
like VMware or virtual box is required at this stage.

• A Sign up is required for the Mininet-discuss mailing

list. Mininet support and consultation with the

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,29-36

© 2015-19, IJARCS All Rights Reserved 34

Mininet community, friendly is present there in case
if you need any type of help.

• VM Setup Notes can be go through at this stage if

required and then log in to the VM and customization
is done as per the wish.

• To accelerate for additional tutorials go to Mininet

[16].

Fig.4.1 Mininet

B. Mininet Commands

• $ sudo mn –h: This is used for displaying a help
message describing Mininet startup option where $
proceeds Linux command that should be typed in root
shell prompt.

• $ sudo mn: The default topology is the minimal
topology which is very simple topology that contains
OpenFlow switch and 2 hosts. It also creates links
between switch and two hosts. This show following
results:

***creating controller
***adding controller
***adding hosts:
h1 h2
***adding switches:
s1
***adding links:
(h1,s1) (h2,s1)
***configuring hosts
h1 h2
***starting controller
c0
***starting controller
s1
***starting CLI
Mininet>

• Mininet>net : This command shows following

results:
mininet> net

h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0

• Mininet>dump

This will show switches and hosts listed.
mininet> dump
<Host h1: h1-eth0:10.0.0.1 pid=8683>
<Host h2: h2-eth0:10.0.0.2 pid=8684>

• mininet> nodes

available nodes are:
c0 h1 h2 s1

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2
h2 -> h1
*** Results: 0% dropped (2/2 received)

C. Mininet topologies

Default topologies such as minimal, single, reversed, linear
and tree are contained by Mininet although apart from these
default topologies custom topologies can also be created in
mininet as per the need while creating or experimenting any
application used in SDN environment [17].

• Minimal: Minimal is very simple topology that
contains 1 OpenFlow switch and 2 hosts.Fig.4.2
shows the diagrammatic representation of minimal
topology. The code used to create this topology in
mininet is also given as follows:

sudo mn --topo minimal
mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0

Figure 4.2: Minimal topology

• Single: This topology includes one OpenFlow switch

with k hosts [17]. A link between switch and k hosts
is also created as shown in figure 5.3.The code used
in mininet for the single topology is as follows:

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,29-36

© 2015-19, IJARCS All Rights Reserved 35

Figure 4.3: Single topology

sudo mn --topo single,3
mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
h3 h3-eth0:s1-eth3
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0 s1-eth3:h3-
eth0

• Reversed: Reversed topology is same as that of

single topology. The only difference between
Reversed topology and single topology is the order of
connection [18]. In case of reversed the order is
opposite to single topology.

Figure 4.4: Single topology

• Linear: Linear topology is a combination of k

switches and k hosts. A link between every switch
and every host and all the switches is created to create
a topology as shown in the figure 4.5 [18] .The code
used to create this topology in mininet is as follows:

Figure 4.5: linear topology

sudo mn --topo linear,3
mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s2-eth1
h3 h3-eth0:s3-eth1
s1 lo: s1-eth1:h1-eth0 s1-eth2:s2-eth2
s2 lo: s2-eth1:h2-eth0 s2-eth2:s1-eth2 s2-eth3:s3-eth2
s3 lo: s3-eth1:h3-eth0 s3-eth2:s2-eth3

• Tree: To per switch (s1, s2 ….s8) this topology

contains m levels and 2 hosts (H1, H2….H8) are
attached as shown in fig.4.6 [18].

Figure 4.6: Tree topology

VI. SECURITY THREATS IN SDN

 For building a SDN environment, the security of each and
every component of SDN is to be ensured. Following is some
of the essential security requirements for securing the SDN
key components [19].

• Security of the controller: Top priority should be
Securing the SDN controller. The responsibility for
the overall management of the network is of SDN
controller. The controller acts as a central decision
points for whole the whole network, it can lead
(centralized behavior of SDN controller) to the
disaster of the entire network.

SDN controller is a single point of failure and also
acts as a target for attackers as well. For the whole
network the availability of the SDN controller in such
a way is of serious concern [19]. In reconfiguring the
complete network the SDN controller, essentially
supports a hacker in it .The address of an SDN
controller to a fake controller through spoofing can be
done and can be taken over the whole network.
Defense mechanism in depth is needed for this and
from physical and external threats the protection of
the system containing the SDN controller should be
included as well. From different attacks like DoS and
distributed DoS (DDoS) attacks it should be
prevented. Security of the operating system must be
there, which includes no patches, back-door accounts

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,29-36

© 2015-19, IJARCS All Rights Reserved 36

open doors at the same time, like vulnerable open
ports, services, and protocols [20].

• Attack in denial of services — Take an example of a
POX controller, for creating a particular virtual
network placed on the end user side placement of the
special controller is done. Knowledge of the network
is contained by the controller and it is prone to many
attacks such as DoS attacks. Generation of huge
number of flows which ultimately rendering network
breakdown or improper functioning can be done by
the attacker during this [21, 22].

• Attack through spoofing —launch of a simple and

easy spoofing attack can be done in SDN network
[21] in which one person or program successfully
masquerade the SDN controller as another by
falsifying data, and hence gaining an illegitimate
advantage of useful data inside the network.

• Injecting Malicious things inside the network —

Malicious injections can be made by simply
following the existing Field Rewrite problem, to
change the VLAN ID tag subject in particular
circumstances is provided to end users. To inject
packets into another slice .This situation simply
creates an opportunity for a nasty controller [22].

VII. CONCLUSION

 Due to the Dynamic management of traffic in networks
provided by SDN technology, more bandwidth is available to
the users. No more dependency is there on dedicated hardware
which is a cost effective way too. An abstracted view of
network is provided. SDN is considered to be the best solution
for meeting the new demands in networking. As SDN is an
emerging technology so, research is still going on in order to
make it more efficient way of networking. It is hoped that
introduction about SDN its architecture and Controllers
discussed here will prove to be helpful for the researchers
working in this area.

ACKNOWLEDGMENT

 We would like to thank almighty for his constant blessings.
Then we would like to dedicate our gratitude towards parents,
teachers, family, friends, and in essence, all sentient one
beings.

REFERENCES

[1] Jammal,Manar,Taranpreet Singh,Abdallah Shami,Rasool
Asal,Yimming Li.”Software Defined Networking:State of the

Art And Research Challenges”Elsevier Computer networks
72(2014)74-98

[2] Wickboldt , Juliano Araujo, Wanderson Paim de Jesus, Pedro
Heleno Isolani, Cristiano Bonato Both, Juergen Rochol, and
Lisandro Zambenedetti Granville “Software-Defined
Networking: Management Requirements and Challenges “, IEEE
Communications Magazine,January 2015

[3] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An
Intellectual History of Programmable Networks,” SIGCOMM
Comput. Commun. Rev., vol. 44, no.2, Apr. 2014, pp. 87–98.

[4] Kim, H. and N. Feamster, “Improving Network Management
with Software Defined Networking,” IEEE Commun. Mag., vol.
51, no. 2, Feb. 2013, pp. 114–19.

[5] Wenfeng, Xia ,Yonggang Wen, Senior Member, IEEE, Chuan
Heng Foh, Senior Member, IEEE,Dusit Niyato, Member, IEEE,
and Haiyong Xie, Member, IEEE.” A Survey on Software-
Defined Networking.”

[6] Jarschel, Michael, Thomas Zinner, Tobias Hoßfeld, Phuoc Tran-
Gia, and Wolfgang Kellerer.”Interfaces, Attributes, and Use
Cases:A Compass for SDN”. IEEE Communications Magazine,
June 2014.

[7] Nick, McKeown, Tom Anderson, Hari Balakrishnan Guru
Parulkar,Larry Peterson, Jennifer Rexford.Scott Shenker.
Jonathan Turner “OpenFlow: Enabling Innovation in Campus
Networks”, March 14, 2008.

[8] OpenFlow Switch Specification, March 26, 2015.
[9] OpenFlow, http://www.openflow.org/
[10] Python at https://www.python.org/
[11] Ryu at https://osrg.github.io/ryu/
[12] Trema at

[22] Akhunzada, Adnan, Ejaz Ahmed, Abdullah Gani, Muhammad
Khurram Khan, Muhammad Imran, and Sghaier Guizani
“Securing Software Defined Networks: Taxonomy,
Requirements, and Open Issues”. IEEE Communications
Magazine, April 2015.

https://github.com/trema/trema
[13] Floodlight http://www.projectfloodlight.org/floodlight/
[14] OpenDaylight at http://www.opendaylight.org/
[15] Figuerola, A.;” OpenDaylight as a Controller for Software

Defined Networking” Spring 2014/2015.
[16] Mininet at www.mininet.org
[17] Kaur, Karamjeet, Japinder Singh, and Navtej Singh Ghumman.

"Mininet as Software Defined Networking Testing Platform.
[18] DeCusatis, Casimer, Aparicio Carranza and Jean Delgado-

Caceres “Modeling Software Defined Networks using Mininet”,
Proceedings of the 2nd International Conference on Computer
and Information Science and Technology (CIST’16) Ottawa,
Canada – May 11 – 12, 2016.

[19] A. Akhunzada et al., “Man-At-The-End Attacks:
Analysis,Taxonomy, Human Aspects, Motivation and Future
Directions,”J. Network and Computer Applications, 2014.

[20] L. Wei et al., “Security and Privacy for Storage and
Computation in Cloud Computing,” Info. Sciences, vol. 258,
2014, pp. 371–86

[21] Q. Duan, Y. Yan, and A. V. Vasilakos, “A Survey on Service-
Oriented Network Virtualization Toward Convergence Of
Networking and cloud Computing,” IEEE Trans. Network and
Service Management, vol. 9, no. 4, 2012, pp. 373–92.

	I.Introduction
	II.Background
	A. Limitations of Traditional Networks:

	III.Sdn Architecture
	B.SDN Architecture contains the following three layers

	IV. Controllers in SDN
	Trema: For developing different controllers which use OpenFlow protocol for configuring and connection to the network devices (switches, routers) through Southbound APIs called as OpenFlow Controller , Trema provides a framework (open source) to them ...
	Floodlight: It is a java based OpenFlow controller, managed by ONF (Open Networking Foundation) and licensed by Apache. It specifies a “Forwarding instruction set” in which a remote controller can make changes in network behavior through some defined ...

	v.Software Defined Networking with Mininet
	VI. Security Threats in SDN
	vii. conclusion
	Acknowledgment
	References

