
Volume 8, No. 1, Jan-Feb 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 277

ISSN No. 0976-5697

A Comparative Study of Well Known Sorting Algorithms

Kazim Ali
MS Computer Science

Lahore Leads University, Pakistan

Abstract: .In computer science sorting is much basic and important problem. Sorting is also a fundamental problem in algorithm analysis and
designing point of view. Therefore many computer scientists have much worked on sorting algorithms. Therefore as a computer science student,
I also want to work on existing sorting algorithms and presenting my findings after studying some well-known sorting algorithms which are
Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Heap Sort, Quick Sort, Counting Sort, Bucket Sort and Radix Sort. In this paper, we will
study these algorithms and their time complexities. Time complexity is much important factor of success and popularity of any sorting
algorithm. Time complexity means the running time of algorithms on a virtual machine or a real machine. The stability and in-placing of above
algorithms will also discuss .Therefor time complexity comparisons are done in this paper and also determine the conditions where a specific
algorithm is best. I will also present some related work of different people. My own comments and opinions on the previous related work will
also be the part of this paper.

Keywords: Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Heap Sort, Quick Sort, Counting Sort, Bucket Sort, Radix Sort, Time
Complexity, Comparison .

1. INTRODUCTION

There are several algorithms which are used to solve the
sorting problems. In sorting we have a number of elements
like a1, a2, a3,..........an as input and we have to determine the
output as á1̍ ≤ á2̍ ≤ á3̍……..≤ án̍ and vice versa [1]. The data
elements which are to be sorted, normally stored in an array
data structure but it is not necessary we can use any other
linear or non-linear data structure for storing purpose
according to nature of data elements. Most software
applications need to sort data in some order e.g. ascending or
descending. When data will be sorted then there must be used
some sorting algorithm. Therefore research in sorting
algorithm is very important in computer science. In earlier
days, People thought a commercial computer spent a
significant amount to sort data [2]. There are many basic and
advance level algorithms are available which are best for some
specific sorting problem but not for all sorting problems. I
think they depend upon amount of data, nature of data, format
of input or perhaps machine specific. Anyway number of
reasons can participate to select a sorting algorithm to solve a
specific sorting problem.
In this research paper, I am tried to present a comparison based
analysis of some simple and advanced level algorithms and
explain these algorithms in a simple manner. Also present
some previous comparative study of sorting algorithms of
some other people which have done nicely. But in the field of
knowledge we can criticize in a polite and civilized manner the
work of other people which are great researcher, hard work
and much respectable people in their fields. It is also a bare
fact that the critical research is the base of knowledge.
Unfortunately, this mistake will be done by me in this research
paper in the study of related work and discussion section.

2. RELATED WORK AND DISCUSSION

[3] They have compared four already known algorithms,
insertion sort, bubble sort, selection sort, merge sort and

computed their running time on a real machine. They have
input 10, 100, 1000 and 10000 elements to theses sorting
algorithms and measure their time on these inputs. This is a
nice work but problem is that it is a machine specific analysis.
It must be machine independent. [4] Presents analysis of two
sorting algorithms selection sort and Quick sort on integer and
character arrays by running on CPU and measure time taken to
sort both arras. Again good and nice effort but it is also
machine specific analysis. [5] Presents a new approach to
increase the efficiency of an Old Bubble Sort algorithm, good
effort but not so useful in the presence of some efficient
algorithms which have less time complexity. [6] Describe a
comparative study of Selection Sort, Quick Sort, Insertion
Sort, Merge Sort, Bubble sort and Grouping Comparison Sort.
They also run on a real computer against different size of
inputs and measure their running time on a specific computer.
[7] Proposed an Enhancement of bubble sort algorithm whose
performance is better than old Bubble sort algorithm on a real
computer. But this performance is also on a specific computer.
We do not know what performance on other machines or
computing devices. [8] Compares three algorithms bubble sort,
binary sort and merge sort nicely and compare their best case,
average case and worst case time complexity and also discuss
their stability. It is a machine independent analysis, which is a
good approach. [9] Conduct a comparative study of five
sorting algorithms bubble sort, selection sort, insertion sort,
merge sort, quick sort and compare their average case, best
case, worst case time and space complexity with help of C#
language program. Also discussed stability and in placing of
these algorithms. It is a good comparative study but machine
and language dependent. [10] Has compared four algorithms
quick sort, heap sort, and insertion sort, merge sort and
presented their running time using turbo C++ compiler.

3. SORTING ALGORITHMS

In this section I will present a detail study of well-known
sorting algorithms which is given as under.

Kazim Ali , International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,277-280

© 2015-19, IJARCS All Rights Reserved 278

3.1. Merge Sort:
Merge sort is based on divide and conquer strategy technique
which is a popular problem solving technique. We will give a
set of data items of length n as an input to the algorithm or
procedure, stored in an array A or any other data structure
which is best suited according to conditions. The merge sort
algorithm is work as under

• Split array A from middle into two parts of length
n/2.

• Sorts each part calling Merge Sort algorithm
recursively.

• Merge the two sorting parts into a single sorted list.
The pseudo code of Merge Sort Algorithm is given under.

MERGE-SORT (array A, int p, int r)
{

 If (p < r)
 Then
 q (p + r)/2
 MERGE-SORT (A, p, q)
 MERGE-SORT (A, q + 1, r)
 MERGE (A, p, q, r)
}
The MERGE algorithm is given under
MERGE (array A, int p, int q, int r)
{
 int B[p….r]
int i ← k ← p
int j ← q + 1
 while (i ≤ q) and (j ≤ r)
 do if (A[i] ≤ A[j])
 then
 B[k++] ← A[i++]
 else
B[k++] ← A[j++]
 while (i ≤ q)
 do B[k++] ← A[i++]
 while (j ≤ r)
 do B[k++] ← A[j++]
 for i ← p to r
 do A[i] ← B[i]
}
The Merge Sort Algorithm takes Ѳ (nlogn) time. [1] Describes
the whole method to calculate the running time using
mathematically tools. Therefore I will not determine the time
complexity of sorting algorithms. It is stable algorithm but not
in-place.
3.2 Quick Sort:
Quick Sort is based on divide and conquers strategy. It is one
of the fastest sorting algorithms which is the part of many
sorting libraries. The algorithm is given by
QUICKSORT(array A, int p, int r)
{
 if (r > p)
 then
 i ← a random index from [p..r]
 swap A[i] with A[p]
 q ← PARTITION(A, p, r)
 QUICKSORT(A, p, q − 1)
 QUICKSORT(A, q + 1, r)
}
The partition algorithm is given by

PARTITION(array A, int p, int r)
{
 x ← A[p]
 q ← p
 for s ← p + 1 to r
 do if (A[s] < x)
 then q ← q + 1
 swap A[q] with A[s]
 swap A[p] with A[q]
 return q
}
The partition algorithm works as follows

• A[p] = x is the pivot value.
• A [p…q - 1] contains elements less than x.
• A [q + 1…s - 1] contains the element which are

greater than or equal to x.
• A[s...r] contains elements which are currently

unknown.
The running time of Quick Sort depends upon heavily on
choosing the pivot element. Since selection of pivot element is
randomly therefore running time is Ѳ (nlogn). However worst
case running time is Ѳ (n 2) but it happens rarely. Quick sort is
not stable but is an in-place [1].
3.3 Heap Sort:
A heap is a left complete binary tree which satisfies the heap
order. There are two types of heap. The minimum heap
contains the smallest value in the root node and the maximum
heap contains the largest value in the root node. Heap sort
algorithm works as follows

• Build a max heap of a given array A[1…n].
• Extract the largest value from the heap repeatedly.
• When largest element is removed then a whole is left

at the root node.
• Replace with the last leaf to fix this problem.

The heap sort algorithm is given by
HEAPSORT(array A, int n)
{
 BUILD-HEAP(A, n)
 m ← n
 while (m ≥ 2)
 do SWAP (A[1], A[m])
 m ← m− 1
 HEAPIFY (A, 1, m)
}
The heapify procedure is given by
HEAPIFY(array A, int i, int m)
{
 l ← LEFT(i)
 r ← RIGHT(i)
 max ← i
 if (l ≤ m) and (A[l] > A[max])
 then max ← l
 if (r ≤ m) and (A[r] > A[max])
 then max ← r
 if (max ≠ i)
 then SWAP (A[i], A[max])
 HEAPIFY (A, max, m)
}
The running time of heap sort is Ѳ (nlogn). The method to
calculate the running time is given in [1].

Kazim Ali , International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,277-280

© 2015-19, IJARCS All Rights Reserved 279

3.4 Selection Sort:
The main idea of selection sort algorithm is given by

• Find the smallest element in the data list.
• Put this element at first position of list.
• Find the next smallest element in the list.
• Place at the second position of the list and continue

until the whole data items are sorted.
The pseudo code of this algorithm is

SELECTION-SORT(A)
 for j ← 1 to n-1
 small ← j
 for i ← j + 1 to n
 if A[i] < A[small]
 small ← i
 Swap A[j] ↔ A[small]
The running time of Selection Sort Algorithm is Ѳ (n2) and in-
place sorting algorithm. It cannot be implemented as stable
sort.
3.5 Insertion Sort:
The main idea of insertion sort is

• Start by considering the first two elements of the
array data. If found out of order, swap them

• Consider the third element; insert it into the proper
position among the first three elements.

• Consider the fourth element; insert it into the proper
position among the first four elements and continue
until array is sorted.

The pseudo code is
INSERTION-SORT (A)
 For j ← 2 to length [A]
 Do key ← A [j]
 Insert A[j] into the sorted sequence A [1 . . . j - 1].
 i ← j - 1
 While i > 0 and A[i] > key
 Do A [i + 1] ← A[i]
 i ← i - 1
 A [i + 1] ← key
The running time of insertion is Ѳ (n 2) and in-place sorting
algorithm. It can be implemented as stable sort.
3.6 Bubble Sort:
The steps in the bubble sort can be described as below

• Exchange neighboring items until the largest item
reaches the end of the array.
• Repeat the above step for the rest of the array.

The pseudo code is
Bubble-Sort (A)
 For I ← Length [A] down to 2
 Do for j← 2 to I
 Do if A [j-1] ˃ A [j]
 Then Swap A [j-1] ↔ A [j]
The running time of Bubble Sort is Ѳ (n 2) and in-place sorting
algorithm. It can be implemented as stable sort.
3.7 Counting Sort:

• The Counting Sort is sorted the numbers whose range
is 1 to k where k is small value.

• The main idea is to determine the rank of each
element.

• The rank of element is the number of elements which
are less than or equal to that number.

• After determine the rank, copy the numbers to their
final position in the output array.

• Counting Sort algorithm takes Ѳ (n + k) time.

• If k is Ѳ (n) then Countin g sort is Ѳ (n) time
algorithm.

• It is stable but not in-place algorithm.
Here is the pseudo code
Counting-Sort (array A, array B, int k)
 For i ← 1 to k
 Do C[i] ← 0
 For j ← 1 to length [A]
 Do C [A[j]] ← C[A[j]] + 1
 For i ← 2 to k
 Do C[i] ← C[i] + C [i − 1]
 For j ← length [A] down to 1
 Do B[C [A[j]]] ← A[j]

 C [A[j]] ← C[A[j]] – 1

3.8 Bucket Sort:

• Let S be a list of n key-element items with keys in [0,
N - 1].

• Bucket-sort uses the keys as indices into auxiliary
array B:

• The elements of B’ are lists, so-called buckets.
• Phase 1:
• Empty S by moving each item (k, e) into its bucket

B[k].
• Phase 2:
• for i = 0 ,…., N - 1 move the items of B[k] to the end

of S.
Here is the pseudo code
BUCKET-SORT (A)
 B [0….n - 1]
 n = A.length
 For i = 0 to n - 1
 B [i] = NULL
 For i = 1 to n
 Insert A[i] into list B [nA[i]]
 For i = 0 to n - 1
 Sort list B[i] with insertion sort.
 Concatenate the lists B [0], B [1],……., B [n-1] in order.
The running time of bucket sort is Ѳ (n). It is stable and in-
place algorithm.

3.9 Radix Sort:

• Sort on the most significant digit then the second
most significant digit and continue.

• Sort the least significant digit first.
The pseudo code is
Radix-Sort (A, d)
For i=1 to d
Stable-Sort (A) on digit i
The running time of Radix-Sort is Ѳ (n). It is stable but not in-
place algorithm.

4. COMPARISON TABLE

This table gives the comparison of time complexity or running
time of above sorting algorithm in a short and precise manner
which given as under.

Kazim Ali , International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,277-280

© 2015-19, IJARCS All Rights Reserved 280

Table No. 1:

Name of
Algorithm

Worst Case
Running

Time

Average
Case

Running
Time

Stable In-
Place

Mere Sort Ѳ(nlogn) Ѳ(nlogn) Yes No
Heap Sort Ѳ(nlogn) Ѳ(nlogn) No Yes
Quick Sort Ѳ(n2) Ѳ(nlogn) No Yes

Insertion Sort Ѳ(n2) Ѳ(n2) Yes Yes
Selection

Sort Ѳ(n2) Ѳ(n2) No Yes

Bubble Sort Ѳ(n2) Ѳ(n2) Yes Yes
Counting

Sort Ѳ(n) Ѳ(n) Yes No

Bucket Sort Ѳ(n) Ѳ(n) Yes Yes
Radix Sort Ѳ(n) Ѳ(n) Yes No

5. CONCLUSION

In this paper, I have discussed well known sorting algorithms,
their pseudo code and running time. In the previous work
section, the people have done a comparative study of sorting
algorithms. Some have compared four or five different
algorithms and their running time. Also some of them
compared running time of algorithms on real computers on
different number of inputs which is not much useful because
in these days, the diversity of computing devices is very high.
Manufacture companies change the specification s of their
devices day by day. Its means that these type of comparative
studies are only valid for some or one specific type of
computers or computing devices, not all computers or
computing devices. Therefore I have done this comparative
study of sorting algorithms impendent of machines. I have
compared the running time of their algorithms purely as a
mathematical entity and tried to analyze as a generic point of
view. I have discussed nine well known sorting algorithms and
their running time which is given in the above table. From the
table No.1, it is cleared that the running time of Merge Sort,
Heap Sort and Quick Sort are Ѳ (nlogn) therefore these
algorithms are also called Ѳ (nlogn) time algorithms. The
Insertion Sort, Selection Sort and Bubble Sort take Ѳ (n 2)
running time. These are called slow sorting algorithms and
expensive in the sense of running time. Their use is not so
much in these days. It is mathematically proved that any
comparison based sorting algorithm take at least Ѳ (nlogn)
running time [1]. Therefore we should select a sorting
algorithm among Ѳ (nlogn) running time algorithms when
sorting is comparison based. From pseudo of merge sort, it is
cleared that it has used two arrays or any data structures which
is draw back. In Heap Sort, if data items being sorting, initially
store any other data structure than heap then they must be
stored in a max heap or min heap data structure then will be

sorted. I think it is also an overhead of Heap Sort algorithm. In
quick sort, there is no need for extra storage it is a stable
algorithm. Quick Sort is used in most of applications where
sorting is needed. In this algorithm, we have only to care about
the selection of pivot element or item. I think among the
Ѳ(nlogn) running time sorting algorithms, the Quick Sort is
the best choice. The Counting Sort, Bucket Sort and Radix
Sort algorithms are linear time algorithms. The linear time
algorithm are the fastest that an algorithm can run. But these
algorithms are used under restrictive conditions. In my point
of view, the linear time sorting algorithms are best when data
items are numeric and in limited size like grades of students.

6. REFERENCES

[1] T. H. Cormen, C. E. Lieserson, R. L. Rivest and S. Clifford,

“Introduction to Algorith”, 3rd ed., The MIT Press Cambridge,
Massachusetts London, England 2009.

[2] A. Jehad, M. Rami “An Enhancement of Major Sorting
Algorithms,” The International Arab Journal of Information
Technology, Vol. 7, No. 1, January 2010

[3] B. Ashutosh, M. Shailendra, Comparison of Sorting
Algorithms based on Input Sequences, International Journal of
Computer Applications (0975 – 8887) Volume 78 – No.14,
September 2013.

[4] M. A. Ahmed, P. B. Zirra, A Comparative Analysis of Sorting
Algorithms on Integer and Character Arrays, The International
Journal Of Engineering And Science (IJES), Volume 2, Issue 7,
Pages 25-30, 2013, ISSN(e): 2319 – 1813 ISSN(p): 2319 –
1805.

[5] V. Mansotra, Kr. Sourabh, Implementing Bubble Sort
Using a New Approach, Proceedings of the 5th National
Conference; INDIACom-2011, Computing For Nation
Development, March 10 –11, 2011.

[6] Khalid Suleiman Al-Kharabsheh, Ibrahim Mahmoud AlTurani,
Abdallah Mahmoud Ibrahim AlTurani & Nabeel Imhammed
Zanoon, Review on Sorting Algorithms, A comparative study.

[7] R. Harish, Manisha, Runtime Bubble Sort – An Enhancement of
Bubble Sort, International Journal of Computer Trends and
Technology (IJCTT) – volume 14 number 1 – Aug 2014.

[8] Savina, K. Surmeet, Study of Sorting Algorithm to Optimize
Search Results, International journal of emerging trends and
technology in computer science, Volume 2, Issue 1, January –
February 2013.

[9] S. Pankaj, Comparison of Sorting Algorithms (On the Basis of
Average Case), International Journal of Advanced Research in
Computer Science and Software Engineering, Volume 3, Issue 3,
March 2013.

[10] Chhajed. N, U. Imran , Simarjeet. S., B., A Comparison Based
Analysis of Four Different Types of Sorting Algorithms in Data
Structures with Their Performances, International Journal of
Advanced Research in Computer Science and Software
Engineering, Volume 3, Issue 2, February 2013.

