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Abstract: Spam consists of varieties of contents like text, image, embedded HTML, MIME attachments and also the volume of spam mails sent per 
day is massive.  To handle this high volume, high velocity and large varieties of spam, a scalable spam filtering solution is required. Scalable 
solutions available for machine learning and statistical studies can be used to implement a scalable solution for spam filtering also. From Big data 
Analytics domain, Mahout is an open source library from Apache for building scalable solutions in machine learning. This paper uses mahout 
framework to analyse the time and accuracy efficiencies of the results of two Naïve Bayes classification algorithms. 
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I. APACHE MAHOUT 

Apache –Mahout is a set of scalable algorithms to carry out 
the clustering and classification in big data arena problem 
free[1][2].  Mahout is used as a machine learning tool when 
the collection of data to be processed is very large, or too large 
for a single machine[3]. Mahout algorithms are written in 
Java, and some portions are built upon Apache’s Hadoop 
distributed computation project[4]. It doesn’t provide a user 
interface; but a framework of tools intended to be used and 
adapted by developers[5]. 
 

II. MAHOUT IN CLASSIFICATION 

 
 
 
 
 

 
 
 
 

 
Figure 1: Classification systems 

In the book [6] , the authors explain how mahout can be used 
to build and personalize effective classifiers. Different data 
mining and machine learning models are explained with 
examples. The book discusses classification and its 
applications and what algorithms and classifier evaluation 
techniques are supported by Mahout. The paper[7] compares 

k-means and fuzzy c-means for clustering a noisy realistic and 
big dataset. They made the comparison using a free cloud 
computing solution Apache Mahout/ Hadoop and Wikipedia's 
latest articles.  And the authors claim that in a noisy dataset, 
fuzzy c-means can lead to worse cluster quality than k-means. 
They concluded that Mahout is a promise clustering 
technology but is premature. The study[8] uses Apache 
Mahout for Collaborative Filtering and conclude that it is a 
mature framework for building recommenders, still a lot of 
room for improvements and extensions.  An ideal situation to 
evaluate an e-commerce recommender systems, the study[9] 
suggests to find an open-source platform with many active 
contributors that provides a rich and varied set of 
recommender system functions that meets all or most of the 
baseline development requirements 
 

III. METHODOLOGY 

This study discusses on how to choose and extract features 
effectively to build a Mahout classifier, how these extracted 
features are used for creating a model to test the new incoming 
mails. The steps in methodology are explained below. 
 
a. Extracting features to build a Mahout classifier 
 
 
 
 
 
 

Figure 2: extracting features 
Getting data into a form usable by a classifier is a complex 
and often time-consuming step[10]. Preparing data for the 
training algorithm consists of two main steps: 
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1. Preprocessing raw data: Raw data is rearranged into 
records with identical fields. In spam filtering 
context, the data are words.   

2. Converting data to vectors: Classifiable data is parsed 
and vectorized using custom code or tools such as 
Lucene analyzers and Mahout Vector encoders. Some 
Mahout classifiers also include vectorization code. 

b. Preprocessing raw data into classifiable data : 
The first phase of feature extraction involves rethinking the 
data and identifying features in mails to use as predictor 
variables.  Here the header and body parts of the mails are 
used to extract the features in preprocessing task. 
c. Transforming raw data 
Once the features are identified, they must be converted into a 
format that’s classifiable. This involves rearranging the data 
into a single location and transforming it into an appropriate 
and consistent form. Each record contains the fully de-
normalized description of one training example. 
d. Classifying Spam mails 
Classification models for the spam using the learning 
algorithms Naïve bias and complement Naïve bias are built 
based on the spam data set.  These models are applied to new 
set of test data and the efficiency is computed and compared. 

a) Data set pre-processing 
The first step in preparing a data set is to examine the data and 
decide which features might be useful in classifying spam. To 
begin, download Enron data set from this URL:  
http://nlp.cs.aueb.gr/software_and_datasets/Enron-
Spam/index.html 
 

Dataset 
 

Number of mails ineach dataset 

spam ham 
Enron 1 1500 3672 
Enron 2 1496 4361 
Enron 3 1500 4012 
Enron 4 4500 1500 
Enron 5 3675 1500 
Enron 6 4500 1500 

Total 33716 
Table 1: Enron Dataset –Distribution of spam and ham mails 

 
The Enron data set consists of one mail per file. Each file 
begins with header lines that specify things such as: who sent 
the message, how long it is, what kind of software was used, 
and the subject. The predictor features in this kind of data are 
either in the headers or in the message body. A natural step 
when first examining this kind of data is to count the number 
of times different header fields are used across all emails. This 
helps determine which ones are most common and thus are 
likely to affect our classification of emails. 

b) Choosing an algorithm to train the classifier 
The main advantage of Mahout is its robust handling of 
extremely large and growing data sets. The algorithms in 
Mahout all share scalability, but they differ from each other in 
other characteristics. This study uses Naive Bayes and 
complement Naive Bayes as the classifiers. The Naive Bayes 

and complementary Naive Bayes algorithms in Mahout are 
parallelized algorithms that can be applied to larger data sets 
because they can work effectively on multiple machines at 
once. The Mahout implementation of naive Bayes, however, is 
restricted to classification based on a single text-like variable 
which is apt for spam problem since spam contains only words 
or text. 

B. Classifying Enron spam data with naive Bayes 
The data extraction step is applied to get the data ready for the 
training and then the model is got trained. Once that’s done, 
the process of evaluating initial model is started to determine 
whether it is performing well or changes need to be made. 

1) Data extraction for naive Bayes 
First get the spam and legitimate mails into a classifiable form 
and convert it to a file format for use with the Naïve Bayes 
algorithm. The Naïve Bayes classifier’s parser creates a file 
with each line contains the value of the target variable 
followed by space-delimited features, where a 1 indicates the 
presence of the feature name and 0 indicates absence. Each 
directory is scanned and each file is transformed into a single 
line of text that starts with the directory name and then 
contains all the words in the email.  

2) Training the naive Bayes classifier 
In this step, the Naïve Bayes classification model is trained 
with the training and test data converted in right format. The 
resulted model is stored in a directory and the model consisted 
of several files that contain the components of the model. 
These files were in binary format and used to classify the test 
data.  

3) Testing with naive Bayes model 
To evaluate the performance of newly trained model, naive 
Bayes model is run on the test data. The test program 
produced the following output in Table 2. The summary has 
raw counts of how many emails were classified correctly or 
incorrectly.  
 

Summary 
Correctly Classified Instances           1425 99.234% 
Incorrectly Classified Instances 11 0.766% 
Total Classified Instances                1436 

 
Table 2: Classifying the Enron 2 dataset with 25% split using 

Naïve Bayes Model 
 
In this testing, the naive Bayes model is performing well, with 
a score of nearly 93% correct. The program also produced the 
following confusion matrix. 
 
Confusion Matrix 
---------------- 
a      b     <--Classified as 
1040   6     |  1046   a     = ham 
5      35    |  390    b     = spam 
 
Statistics 
----------------- 
Kappa      0.9739 
Accuracy         99.234% 



Romika Yadav et al, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb, 2017,195-198 
 

© 2015-19, IJARCS All Rights Reserved      197                

Reliability      66.041% 
Reliability  0.572 

 
Figure 3: Confusion Matrix and Statistics using Naïve Bayes 

model 

C. Classifying with complement naïve bayes classifier 
In this step, the Complement Naïve Bayes classification model 
is trained with the training dataset as in the case of Naïve 
Bayes. A new model with complement Naïve Bayes algorithm 
is generated and this model is used to classify the test data. 

1) Testing with complement naïve bayes classifier 
To classify the mails in test dataset, the newly trained is model 
is run with the test data. The test program produced the 
following output as shown in Table 3. The summary has raw 
counts of how many emails were classified correctly or 
incorrectly.  
 

Summary 
Correctly Classified Instances           2394  93.0431% 
Incorrectly Classified Instances 179      6.9569% 
Total Classified Instances                2573 

 
Table 3: Classifying the dataset Enron 1 with 50% split 

using Complement Naïve Bayes 
 
In this testing, the Complimentary Naive Bayes model is 
performing well, with a score of nearly 93% correct.  The 
program also produced the following confusion matrix. 
 
Confusion Matrix 
a      b     <--Classified as 
132  2     |  134 a     = ham 
177   562   |  739 b     = spam 
Statistics 
------------------------------------------------------- 
Kappa                                       0.143 
Accuracy                                   93.0431% 
Reliability                                5.6466% 
Reliability (standard deviation)            0.5217 

 
Figure 7: Confusion Matrix and Statistics using Complement 

Naïve Bayes 

D. Performance Evaluation 
1) Time complexity 

The time taken for testing of different partitions of training set 
and test set are given in the Table -4. The algorithms took 
almost same amount of time even in different sample sizes of 
training and test data set. 
 

Dataset 
 

Time taken for testing at different 
Splits of dataset 

( time in milli seconds) 
25% 50% 75% 99% 

Enron 1 2014 2083 3049 3057 
Enron 2 2020 3086 3128 3140 
Enron 3 2059 3091 3087 3143 

Enron 4 2019 3091 3116 3184 
Enron 5 2042 2068 3120 3151 
Enron 6 1995 3050 3135 3129 

Table 4: Time taken for Complimentary Naïve Bayes 
algorithm 

 

 
 

Figure 4: Time taken for Complimentary Naïve Bayes 
algorithm 

Classifying mails with Mahout shows that increasing the 
number of mails in training set and test set do not increase the 
time complexity even linearly as shown in the table.  The 
results of Naïve Bayes and complementary Naïve Bayes prove 
this statement. 

 
 

Dataset 

Time taken for testing at different Splits of 
dataset 

( time in milli seconds) 
25% 50% 75% 99% 

Enron 1 92255 92255 93210 93350 
Enron 2 92194 93219 93284 93235 
Enron 3 92191 93181 93297 94338 
Enron 4 92198 93248 93237 93302 
Enron 5 92161 92406 93291 93194 
Enron 6 92142 93365 93298 93289 

Table 5: Time taken for Naïve Bayes algorithm 
 

 
Figure 5: Time taken for Naïve Bayes algorithm 

 
2) Accuracy 
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As presented in Table 6 the accuracy of classification is 
almost same and high for all the split-ups. This shows that the 
algorithms in Mahout are designed to work robustly and 
reliable in any size of datasets.  

Dataset 
 

Accuracy for testing at different Splits of 
dataset 

25% 50% 75% 99% 

Enron 1 95.02% 93.04% 95.76% 87.5% 

Enron 2 99.24% 98.9% 98.47% 82.49% 
Enron 3 98.41% 98.73% 96.55% 77.96% 
Enron 4 81.50% 89.22% 95.71% 86.2% 
Enron 5 96.59% 97.55% 98.76% 92.06% 
Enron 6 81.39% 87.03% 93.44% 80.29% 

Table 6: Accuracy of testing using Complimentary Naïve 
Bayes algorithm 

 

F
igure 6: Accuracy of testing using Complimentary Naïve 

Bayes algorithm 
 

Dataset 
 

Accuracy for testing at different Splits of dataset 

25% 50% 75% 99% 
Enron 1 98.1395 97.920 97.0226 88.2099 
Enron 2 99.234 99.1456 98.6725 72.913 
Enron 3 99.0566 99.0345 98.4672 74.642 
Enron 4 98.6622 98.0451 96.0071 27.729 
Enron 5 99.3039 99.243 98.7394 62.139 
Enron 6 98.2456 97.1765 92.7236 46.54 

Table 7: Accuracy of testing using Naïve Bayes algorithm 
 

 

 

E. Summary 
The reason Mahout has an advantage with larger data sets is 
that as input data increases; the time or memory requirements 
for training may not increase linearly as in a non-scalable 
system.  The classification algorithms in Mahout require 
resources that increase not faster than the number of training 
or test examples, and in most cases the computing resources 
required can be parallelized. This allows to trade off the 
number of computers used against the time the problem takes 
to solve. 
 
If the training samples are more than ten million and the 
predictor variable is a single, text-like value, naive Bayes or 
complement naive Bayes may be the best choice of algorithm. 
Naive Bayes algorithms are best choice for data with more 
than 100,000 training examples. The amount of time taken for 
classification does not linearly depend on the number of 
training data. 
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