
Volume 8, No. 1, Jan-Feb 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 195

ISSN No. 0976-5697

Spam: A Big Data Challenge
Liny Varghese

Cochin University of Science and Technology
 Kochi, India

Supriya M.H
Cochin University of Science and Technology

 Kochi, India

K Poulose Jacob
Cochin University of Science and Technology

 Kochi, India

Abstract: Spam consists of varieties of contents like text, image, embedded HTML, MIME attachments and also the volume of spam mails sent per
day is massive. To handle this high volume, high velocity and large varieties of spam, a scalable spam filtering solution is required. Scalable
solutions available for machine learning and statistical studies can be used to implement a scalable solution for spam filtering also. From Big data
Analytics domain, Mahout is an open source library from Apache for building scalable solutions in machine learning. This paper uses mahout
framework to analyse the time and accuracy efficiencies of the results of two Naïve Bayes classification algorithms.

Keywords: Apache Mahout, big data, scalable algorithms, Naïve Bayes algorithms

I. APACHE MAHOUT

Apache –Mahout is a set of scalable algorithms to carry out
the clustering and classification in big data arena problem
free[1][2]. Mahout is used as a machine learning tool when
the collection of data to be processed is very large, or too large
for a single machine[3]. Mahout algorithms are written in
Java, and some portions are built upon Apache’s Hadoop
distributed computation project[4]. It doesn’t provide a user
interface; but a framework of tools intended to be used and
adapted by developers[5].

II. MAHOUT IN CLASSIFICATION

Figure 1: Classification systems

In the book [6] , the authors explain how mahout can be used
to build and personalize effective classifiers. Different data
mining and machine learning models are explained with
examples. The book discusses classification and its
applications and what algorithms and classifier evaluation
techniques are supported by Mahout. The paper[7] compares

k-means and fuzzy c-means for clustering a noisy realistic and
big dataset. They made the comparison using a free cloud
computing solution Apache Mahout/ Hadoop and Wikipedia's
latest articles. And the authors claim that in a noisy dataset,
fuzzy c-means can lead to worse cluster quality than k-means.
They concluded that Mahout is a promise clustering
technology but is premature. The study[8] uses Apache
Mahout for Collaborative Filtering and conclude that it is a
mature framework for building recommenders, still a lot of
room for improvements and extensions. An ideal situation to
evaluate an e-commerce recommender systems, the study[9]
suggests to find an open-source platform with many active
contributors that provides a rich and varied set of
recommender system functions that meets all or most of the
baseline development requirements

III. METHODOLOGY

This study discusses on how to choose and extract features
effectively to build a Mahout classifier, how these extracted
features are used for creating a model to test the new incoming
mails. The steps in methodology are explained below.

a. Extracting features to build a Mahout classifier

Figure 2: extracting features
Getting data into a form usable by a classifier is a complex
and often time-consuming step[10]. Preparing data for the
training algorithm consists of two main steps:

Training
mails

Training
algorithm Model

Test/ new
mails

Model Decisions

Raw data
Training

algorithms
Training
examples

Preprocessing Extracting features

Romika Yadav et al, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb, 2017,195-198

© 2015-19, IJARCS All Rights Reserved 196

1. Preprocessing raw data: Raw data is rearranged into
records with identical fields. In spam filtering
context, the data are words.

2. Converting data to vectors: Classifiable data is parsed
and vectorized using custom code or tools such as
Lucene analyzers and Mahout Vector encoders. Some
Mahout classifiers also include vectorization code.

b. Preprocessing raw data into classifiable data :
The first phase of feature extraction involves rethinking the
data and identifying features in mails to use as predictor
variables. Here the header and body parts of the mails are
used to extract the features in preprocessing task.
c. Transforming raw data
Once the features are identified, they must be converted into a
format that’s classifiable. This involves rearranging the data
into a single location and transforming it into an appropriate
and consistent form. Each record contains the fully de-
normalized description of one training example.
d. Classifying Spam mails
Classification models for the spam using the learning
algorithms Naïve bias and complement Naïve bias are built
based on the spam data set. These models are applied to new
set of test data and the efficiency is computed and compared.

a) Data set pre-processing
The first step in preparing a data set is to examine the data and
decide which features might be useful in classifying spam. To
begin, download Enron data set from this URL:
http://nlp.cs.aueb.gr/software_and_datasets/Enron-
Spam/index.html

Dataset

Number of mails ineach dataset

spam ham
Enron 1 1500 3672
Enron 2 1496 4361
Enron 3 1500 4012
Enron 4 4500 1500
Enron 5 3675 1500
Enron 6 4500 1500

Total 33716
Table 1: Enron Dataset –Distribution of spam and ham mails

The Enron data set consists of one mail per file. Each file
begins with header lines that specify things such as: who sent
the message, how long it is, what kind of software was used,
and the subject. The predictor features in this kind of data are
either in the headers or in the message body. A natural step
when first examining this kind of data is to count the number
of times different header fields are used across all emails. This
helps determine which ones are most common and thus are
likely to affect our classification of emails.

b) Choosing an algorithm to train the classifier
The main advantage of Mahout is its robust handling of
extremely large and growing data sets. The algorithms in
Mahout all share scalability, but they differ from each other in
other characteristics. This study uses Naive Bayes and
complement Naive Bayes as the classifiers. The Naive Bayes

and complementary Naive Bayes algorithms in Mahout are
parallelized algorithms that can be applied to larger data sets
because they can work effectively on multiple machines at
once. The Mahout implementation of naive Bayes, however, is
restricted to classification based on a single text-like variable
which is apt for spam problem since spam contains only words
or text.

B. Classifying Enron spam data with naive Bayes
The data extraction step is applied to get the data ready for the
training and then the model is got trained. Once that’s done,
the process of evaluating initial model is started to determine
whether it is performing well or changes need to be made.

1) Data extraction for naive Bayes
First get the spam and legitimate mails into a classifiable form
and convert it to a file format for use with the Naïve Bayes
algorithm. The Naïve Bayes classifier’s parser creates a file
with each line contains the value of the target variable
followed by space-delimited features, where a 1 indicates the
presence of the feature name and 0 indicates absence. Each
directory is scanned and each file is transformed into a single
line of text that starts with the directory name and then
contains all the words in the email.

2) Training the naive Bayes classifier
In this step, the Naïve Bayes classification model is trained
with the training and test data converted in right format. The
resulted model is stored in a directory and the model consisted
of several files that contain the components of the model.
These files were in binary format and used to classify the test
data.

3) Testing with naive Bayes model
To evaluate the performance of newly trained model, naive
Bayes model is run on the test data. The test program
produced the following output in Table 2. The summary has
raw counts of how many emails were classified correctly or
incorrectly.

Summary
Correctly Classified Instances 1425 99.234%
Incorrectly Classified Instances 11 0.766%
Total Classified Instances 1436

Table 2: Classifying the Enron 2 dataset with 25% split using

Naïve Bayes Model

In this testing, the naive Bayes model is performing well, with
a score of nearly 93% correct. The program also produced the
following confusion matrix.

Confusion Matrix

a b <--Classified as
1040 6 | 1046 a = ham
5 35 | 390 b = spam

Statistics

Kappa 0.9739
Accuracy 99.234%

Romika Yadav et al, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb, 2017,195-198

© 2015-19, IJARCS All Rights Reserved 197

Reliability 66.041%
Reliability 0.572

Figure 3: Confusion Matrix and Statistics using Naïve Bayes

model

C. Classifying with complement naïve bayes classifier
In this step, the Complement Naïve Bayes classification model
is trained with the training dataset as in the case of Naïve
Bayes. A new model with complement Naïve Bayes algorithm
is generated and this model is used to classify the test data.

1) Testing with complement naïve bayes classifier
To classify the mails in test dataset, the newly trained is model
is run with the test data. The test program produced the
following output as shown in Table 3. The summary has raw
counts of how many emails were classified correctly or
incorrectly.

Summary
Correctly Classified Instances 2394 93.0431%
Incorrectly Classified Instances 179 6.9569%
Total Classified Instances 2573

Table 3: Classifying the dataset Enron 1 with 50% split

using Complement Naïve Bayes

In this testing, the Complimentary Naive Bayes model is
performing well, with a score of nearly 93% correct. The
program also produced the following confusion matrix.

Confusion Matrix
a b <--Classified as
132 2 | 134 a = ham
177 562 | 739 b = spam
Statistics

Kappa 0.143
Accuracy 93.0431%
Reliability 5.6466%
Reliability (standard deviation) 0.5217

Figure 7: Confusion Matrix and Statistics using Complement

Naïve Bayes

D. Performance Evaluation
1) Time complexity

The time taken for testing of different partitions of training set
and test set are given in the Table -4. The algorithms took
almost same amount of time even in different sample sizes of
training and test data set.

Dataset

Time taken for testing at different
Splits of dataset

(time in milli seconds)
25% 50% 75% 99%

Enron 1 2014 2083 3049 3057
Enron 2 2020 3086 3128 3140
Enron 3 2059 3091 3087 3143

Enron 4 2019 3091 3116 3184
Enron 5 2042 2068 3120 3151
Enron 6 1995 3050 3135 3129

Table 4: Time taken for Complimentary Naïve Bayes
algorithm

Figure 4: Time taken for Complimentary Naïve Bayes
algorithm

Classifying mails with Mahout shows that increasing the
number of mails in training set and test set do not increase the
time complexity even linearly as shown in the table. The
results of Naïve Bayes and complementary Naïve Bayes prove
this statement.

Dataset

Time taken for testing at different Splits of
dataset

(time in milli seconds)
25% 50% 75% 99%

Enron 1 92255 92255 93210 93350
Enron 2 92194 93219 93284 93235
Enron 3 92191 93181 93297 94338
Enron 4 92198 93248 93237 93302
Enron 5 92161 92406 93291 93194
Enron 6 92142 93365 93298 93289

Table 5: Time taken for Naïve Bayes algorithm

Figure 5: Time taken for Naïve Bayes algorithm

2) Accuracy

0
500

1000
1500
2000
2500
3000
3500

25% 50% 75% 99%

Enron 1

Enron 2

Enron 3

Enron 4

Enron 5

Enron 6

91000
91500
92000
92500
93000
93500
94000
94500
95000

25% 50% 75% 99%

Enron 1

Enron 2

Enron 3

Enron 4

Enron 5

Enron 6

Romika Yadav et al, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb, 2017,195-198

© 2015-19, IJARCS All Rights Reserved 198

As presented in Table 6 the accuracy of classification is
almost same and high for all the split-ups. This shows that the
algorithms in Mahout are designed to work robustly and
reliable in any size of datasets.

Dataset

Accuracy for testing at different Splits of
dataset

25% 50% 75% 99%

Enron 1 95.02% 93.04% 95.76% 87.5%

Enron 2 99.24% 98.9% 98.47% 82.49%
Enron 3 98.41% 98.73% 96.55% 77.96%
Enron 4 81.50% 89.22% 95.71% 86.2%
Enron 5 96.59% 97.55% 98.76% 92.06%
Enron 6 81.39% 87.03% 93.44% 80.29%

Table 6: Accuracy of testing using Complimentary Naïve
Bayes algorithm

F
igure 6: Accuracy of testing using Complimentary Naïve

Bayes algorithm

Dataset

Accuracy for testing at different Splits of dataset

25% 50% 75% 99%
Enron 1 98.1395 97.920 97.0226 88.2099
Enron 2 99.234 99.1456 98.6725 72.913
Enron 3 99.0566 99.0345 98.4672 74.642
Enron 4 98.6622 98.0451 96.0071 27.729
Enron 5 99.3039 99.243 98.7394 62.139
Enron 6 98.2456 97.1765 92.7236 46.54

Table 7: Accuracy of testing using Naïve Bayes algorithm

E. Summary
The reason Mahout has an advantage with larger data sets is
that as input data increases; the time or memory requirements
for training may not increase linearly as in a non-scalable
system. The classification algorithms in Mahout require
resources that increase not faster than the number of training
or test examples, and in most cases the computing resources
required can be parallelized. This allows to trade off the
number of computers used against the time the problem takes
to solve.

If the training samples are more than ten million and the
predictor variable is a single, text-like value, naive Bayes or
complement naive Bayes may be the best choice of algorithm.
Naive Bayes algorithms are best choice for data with more
than 100,000 training examples. The amount of time taken for
classification does not linearly depend on the number of
training data.

F. References
[1] G. Ingersoll, “Introducing apache mahout,” IBM

developerWorks Technical Library. 2009.
[2] P. Giacomelli, Apache mahout cookbook. Packt

Publishing Ltd, 2013.
[3] G. Ingersoll, “Introducing Apache Mahout Scalable,

commercial-friendly machine learning for building
intelligent applications,” IBM Corporation. 2009.

[4] A. Mahout, “Scalable machine learning and data
mining,” 2013-4-24. http://mahout. apache, org. 2012.

[5] A. Mahout, “Scalable machine-learning and data-
mining library,” available at mahout. apache. org.
2008.

[6] A. Gupta, Learning Apache Mahout Classification.
Packt Publishing Ltd, 2015.

[7] C. Rong and others, “Using mahout for clustering
wikipedia’s latest articles: A comparison between k-
means and fuzzy c-means in the cloud,” in Cloud
Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on, 2011,
pp. 565–569.

[8] S. Schelter and S. Owen, “Collaborative filtering with
Apache Mahout,” Proc. ACM RecSys Chall., vol. i,
no. September 2012, pp. 1–13, 2012.

[9] S. G. Walunj and K. Sadafale, “An online
recommendation system for e-commerce based on
apache mahout framework,” in Proceedings of the
2013 annual conference on Computers and people
research, 2013, pp. 153–158.

[10] S. OWEN, R. ANIL, T. DUNNING, and E.
FRIEDMAN, Mahout in Action. Manning
Publications Co. Greenwich, CT, USA, 2011.

Figure 7: Accuracy of testing using Naïve Bayes algorithm

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

25% 50% 75% 99%

Enron 1

Enron 2

Enron 3

Enron 4

Enron 5

Enron 6

0
20
40
60
80

100
120

25% 50% 75% 99%

Enron 1

Enron 2

Enron 3

Enron 4

Enron 5

Enron 6

	Apache Mahout
	Mahout in classification
	Figure 1: Classification systems

	Methodology
	Extracting features to build a Mahout classifier
	Figure 2: extracting features
	Preprocessing raw data into classifiable data :
	Transforming raw data
	Classifying Spam mails
	Data set pre-processing
	Choosing an algorithm to train the classifier

	Classifying Enron spam data with naive Bayes
	Data extraction for naive Bayes
	Training the naive Bayes classifier
	Testing with naive Bayes model

	Classifying with complement naïve bayes classifier
	Testing with complement naïve bayes classifier

	Performance Evaluation
	Time complexity
	Accuracy

	Summary
	References

