
Volume 7, No. 7, Nov-Dec 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 6

A Comparative Study of Clustering Deviations for Black-Box Regression Test-Selection
Techniques

Dr. R. Beena MCA.,M.Phil., Ph.D.,

Head, Department of Computer Science
Kongunadu Arts and Science College

Coimbatore, India

Ms. S. Gomathi M.Sc(CT).,
 Research Scholar, Department of Computer Science

Kongunadu Arts and Science College
Coimbatore, India

Abstract: Regression test-selection techniques decrease the cost of regression testing by choosing a separation of an existing test suite to use in

retesting a customized program. Over the history, similarity based regression test-selection techniques have been described in the literature. This

paper aims to present a comparative study of present techniques of clustering deviations in black-box regression testing under the data mining

clustering and classification techniques that are in use in today's software engineering of verification and validation tasks. Number of

comparative study has been performed to evaluate the performance of predictive accuracy on the test cases and the outcome discloses that

Hierarchical Clustering (HC) and decision Tree outperforms having better performance other predictive methods like Simple K-means,

Randomized algorithms, are not performing well.

Keywords: Clustering, Regression testing, Black-box, Genetic algorithm.

I. INTRODUCTION

Clustering is a data mining technique of grouping set of data

objects into multiple groups or clusters so that objects within

the cluster have high similarity, but are very dissimilar to

objects in the other clusters. Dissimilarities and similarities are

assessed based on the attribute values describing the objects.

Clustering algorithms are used to organize data, categorize

data, for data compression and model construction, for

detection of outliers etc. Common approach for all clustering

techniques is to find clusters centre that will represent each

cluster. Cluster centre will represent with input vector can tell

which cluster this vector belong to by measuring a similarity

metric between input vector and all cluster centre and

determining which cluster is nearest or most similar one [3].

Testing software is a very important and challenging activity.

Nearly half of the software production development cost is

spent on testing. The main objective of software testing with

clustering approach is to eliminate as many errors as possible to

ensure that the tested software meets an acceptable level of

quality.

Regression testing is a highly important but time consuming

activity [1]. A great deal of work has been performed on

devising and evaluating techniques for selecting, minimizing,

and prioritizing regression test cases [2]. Such techniques are

necessary, but unfortunately not sufficient to help scale

regression testing to large, complex systems. Indeed, in

practice, even with efficient prioritization or selection,

numerous regression test deviations may need to be analyzed to

determine if they are due to a regression fault or simply the

effect of a change. A problem that has been largely ignored so

far, but which is highly important in practice, is how to cope

with the many discrepancies (deviations) that can be observed

when running regression test cases on a new version of a

system.

Regression testing is performed when changes are made to

existing software; the purpose of regression testing is to

provide confidence that the newly introduced changes do not

obstruct the behaviors of the existing, unchanged part of the

software. It is a complex procedure that is all the more

challenging because of some of the recent trends in software

development paradigms. For example, the component based

software development method tends to result in use of many

black-box components, often adopted from a third-party. Any

change in the third-party components may interfere with the

rest of the software system, yet it is hard to perform regression

testing because the internals of the third-party components are

not known to their users.

Software systems and their environments change

continuously. They are enhanced, corrected, and ported to new

platforms. These changes can affect a system adversely, thus

software engineers perform regression testing to ensure quality

of the modified systems. Because regression testing is

responsible for a significant percentage of the costs for

software maintenance and because the maintenance costs often

dominate total lifecycle costs [13], regression testing is one of

the largest contributors to the overall cost of software. To

S. Gomathi et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,6-10

© 2015-19, IJARCS All Rights Reserved 7

improve the cost effectiveness of regression testing techniques,

many researchers have proposed and empirically studied

various regression testing techniques, such as regression test

selection (e.g., [14]), test suite minimization (e.g., [11]), and

test case prioritization (e.g., [12]).

Requirements-Tests linking resolution obtain the clusters of

requirements, to utilize the requirement-test cases traceability

matrix to collect test cases that are associated with each

requirement cluster. Figure 1 reviews the process. The two

ovals on the left side represent the clusters of requirements. For

instance, cluster 1 contains requirements 1, 3, and 4. The figure

represents the requirement-tests traceability matrix. There are

two cases (TC1 and TC2) associated with requirement 1. The

requirements-tests mapping resolution process obtains the

clusters of test cases (the ovals on the right side of the figure)

by reading the requirements in the clusters and identifying their

corresponding test cases from the matrix. For instance, cluster 1

on the right side contains five test cases (1, 2, 6, 7, and 8) that

are associated with requirements 1, 3, and 4.

Figure 1: Requirement-tests mapping resolution

In this paper, we explore strategies for feature selection

regression test cases based on class regression decision tree

models. Such representations have been usually used to

partition the input domain of the system being tested [3], which

in turn is used to choose and create system test cases so as to

attain certain strategies for partition coverage. Such models are

widely applied for black-box system testing for database

applications and is therefore a natural and practical choice in

our context.

II. RELATED WORK

S. Yoo, M. HarmanIn [2] discussed a survey about

Regression testing activity that is performed to provide

confidence that changes do not harm the existing behavior of

the software. Test suites tend to grow in size as software

evolve, often making it too costly to execute entire test suites.

A number of different approaches have been studied to

maximize the value of the accrued test suite: minimization,

selection and prioritization.

E. Rogstad, L. Briand, E. Arisholm, R. Dalberg, and M.

Rynning [4] presented a practical approach and tool (DART)

for functional black-box regression testing of complex legacy

database applications. Such applications are important to many

organizations, but are often difficult to change and

consequently prone to regression faults during maintenance.

They also tend to be built without particular considerations for

testability and can be hard to control and observe. This

approach is to fully integrate DART with the daily test

operation of the project, and ideally as a continuous part of the

development process, as a means for early fault detection.

E. Rogstad and L. Briand [5] proposed an approach for

selecting regression test cases in the context of large-scale

database applications. We focus on a black-box (specification-

based) approach, relying on classification tree models to model

the input domain of the system under test (SUT), in order to

obtain a more practical and scalable solution. We perform an

experiment in an industrial setting where the SUT is a large

database application in Norway’s tax department. The authors

compared both fault detection rate and selection execution

time. In general random selection is superior to similarity-based

selection in terms of selection execution time. However, the

difference for smaller sample sizes in the range of interest is

less than a few minutes (i.e., 39 s when selecting 30% of the

test suite when comparing similarity partition-based with

random selection).

A. Arcuri and L. Briand [6] discussed features a systematic

review regarding recent publications in 2009 and 2010 showing

that, overall, empirical analyses involving randomized

algorithms in software engineering tend to not properly account

for the random nature of these algorithms. Many of the novel

techniques presented clearly appear promising, but the lack of

soundness in their empirical evaluations casts unfortunate

doubts on their actual usefulness. In software engineering,

though there are guidelines on how to carry out empirical

analyses involving human subjects, those guidelines are not

directly and fully applicable to randomized algorithms.

S. Gomathi et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,6-10

© 2015-19, IJARCS All Rights Reserved 8

C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, and B. Xu

[7] proposed a new regression test selection technique by

clustering the execution profiles of modification traversing test

cases. Cluster analysis can group program executions that have

similar features, so that program behaviors can be well

understood and test cases can be selected in a proper way to

reduce the test suite effectively. This technique effectively

deals with the trade-offs between test suite reduction and fault

detection capability, performing better on large programs.

S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng [8]

discussed a semi-supervised clustering method, namely semi-

supervised Kmeans (SSKM), is introduced to improve cluster

test selection. SSKM uses limited supervision in the form of

pairwise constraints: Must-link and Cannot-link. These

pairwise constraints are derived from previous test results to

improve clustering results as well as test selection results. The

experiment results illustrate the effectiveness of cluster test

selection methods with SSKM. Two useful observations are

made by analysis. (1) Cluster test selection with SSKM has a

better effectiveness when the failed tests are in a medium

proportion. (2) A strict definition of pairwise constraint can

improve the effectiveness of cluster test selection with SSKM.

Although the authors found some observations on different

definitions of Must-link and Cannot-link, it may be not

sufficient in other applications.

P. G. Sapna and H. Mohanty [9] analyzed clustering is used

to select a subset of scenarios for testing. First, a distance

matrix is obtained by using Levenshtein distance to compare

scenarios. This distance matrix is used as input for the

Agglomerative Hierarchical Clustering (AHC) technique with

the objective of selecting dissimilar test scenarios and at the

same time achieving maximum coverage and rate of fault

detection. Distance measure between scenarios obtained from

UML activity diagrams, calculated using Levenshtein distance

was used as the basis for clustering.

Yue Liu, Kang Wang, Wang Wei, Bofeng Zhang, Hailin

Zhong [10] discussed web application test cases optimization

based on clustering is researched, and a novel method named

USCHC (User Sessions Clustering based on Hierarchical

Clustering algorithm for test cases optimization) is proposed.

This method firstly gives the function to calculate the distance

between the user sessions, and then employs the bottom-up

agglutinate hierarchical clustering algorithm to cluster the

initial testing cases and produces different kinds of test suites.

The work of testing web applications based on mining user

sessions is a complex systematic project. It is not an easy thing

to get an effective and practical tool.

J. Jones and M. Harrold [11] discussed the software testing

is particularly expensive for developers of high-assurance

software, such as software that is produced for commercial

airborne systems. One reason for this expense is the Federal

Aviation Administration's requirement that test suites be

modified condition/decision coverage (MC/DC) adequate.

Despite its cost, there is evidence that MC/DC is an effective

verification technique, and can help to uncover safety faults. As

the software is modified and new test cases are added to the test

suite, the test suite grows, and the cost of regression testing

increases. To address the test-suite size problem, researchers

have investigated the use of test-suite reduction algorithms,

which identify a reduced test suite that provides the same

coverage of the software, according to some criterion, as the

original test suite, and test-suite prioritization algorithms,

which identify an ordering of the test cases in the test suite

according to some criteria or goals.

G. Rothermel, R. Untch, C. Chu, and M. J. Harrold [12]

illustrated the test case prioritization techniques schedule test

cases for execution in an order that attempts to increase their

effectiveness at meeting some performance goal. Various goals

are possible; one involves rate of fault detection, a measure of

how quickly faults are detected within the testing process. The

authors described several techniques for using test execution

information to prioritize test cases for regression testing,

including: 1) techniques that order test cases based on their

total coverage of code components; 2) techniques that order test

cases based on their coverage of code components not

previously covered; and 3) techniques that order test cases

based on their estimated ability to reveal faults in the code

components that they cover.

G. Rothermel and M. J. Harrold [14] proposed a regression

testing is a necessary but expensive maintenance activity aimed

at showing that code has not been adversely affected by

changes. Regression test selection techniques reuse tests from

an existing test suite to test a modified program. Many

regression test selection techniques have been proposed,

however, it is difficult to compare and evaluate these

techniques because they have different goals. This paper

outlines the issues relevant to regression test selection

techniques, and uses these issues as the basis for a framework

within which to evaluate the techniques.

S. Gomathi et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,6-10

© 2015-19, IJARCS All Rights Reserved 9

III. COMPARISON ANALYSIS

This paper aims to collect and consider papers that deal with

different regression testing techniques. Our objective is not to

undertake a logical review, but quite to provide a broad state-

of-the-art view on these related fields. Many different

approaches have been projected to assist regression testing,

which has mentioned in a body of literature that is spread over

a wide variety of fields and periodical locations. The majority

of comparison study has been available in the software

engineering domain, and particularly in the software testing and

software maintenance literature. However, the regression

testing literature also overlaps with those of programming

language analysis, empirical software engineering and software

metrics.

Table 1: SUMMARY TABLE FOR COMPARISON OF CLUSTERING DEVIATIONS FOR BLACK BOX

REGRESSION TECHNIQUES
Title Algorithm Key-Idea Techniques Results Performance

Industrial Experiences with

Automated Regression Testing of

a Legacy Database Application

[2]

Trigger generation in

DART

Black-box

regression testing

Classification

tree models

Good Fault Detection in

multiple Norwegian Tax

Accounting System

To identified 60 %

additional faults

Test case selection for black-box

regression testing of database

applications [5]

Similarity-based

Selection algorithm

System under test

(SUT) is a large

database application

in Norway’s tax

department.

classification tree

models

To be preferred when

faults are located in

partitions containing a

large number of test

cases.

73% of the faults were

located in small

partitions whereas 27%

of the faults were

located in larger

partitions.

A Hitchhiker’s Guide to Statistical

Tests for Assessing Randomized

Algorithms in Software

Engineering [6]

Randomized

algorithms (e.g.,

Genetic Algorithms)

To focus on

software verification

and validation.

Genetic search

optimization

model

To predict a problems

with a particular focus on

software verification and

validation.

In 27 cases out of 54

show at least 10 runs.

An Improved Regression Test

Selection Technique by Clustering

Execution Profiles [7]

Simple K-means

algorithm.

To improve the

efficiency of

regression testing

many test selection

techniques.

Cluster Selection

technique

Clustering processing

step by 20 times for each

modified version and

analyzed the results

statistically.

The technique could

statistically select a large

part of fault-revealing

test cases, more than

80%.

Using Semi-Supervised Clustering

to Improve Regression Test

Selection Techniques [8]

Semi-supervised

dimensionality

reduction Algorithm

(SSDR) Algorithm

To predict the pair-

wise constraints:

Must-link and

Cannot-link

Regression Test

Selection

Technique

The semi-supervised K-

means (SSKM) and

improve the clustering

results for Flex and

Space.

The tailed test and set

the scaling term is the

value of F-measure with

confidence level is 0.95.

Clustering Test Cases to achieve

Effective Test Selection [9]

Agglomerative

Hierarchical

Clustering(AHC)

algorithm

Levenshtein

distance measure

Agglomerative

Hierarchical

Clustering(AHC)

technique

The two test suites was

done according to

priority, random and

AHC based selection of

scenarios.

To assuming the

constraint that 50% and

60% of test scenarios

need to be selected for

the test suites,

respectively.

IV. CONCLUSION

In this paper presents an comparative study the various

clustering techniques deviations for Regression testing

discussed with the different categories in which algorithms can

be classified (i.e., SSDR, AHC, Simple K-means, Genetic

algorithm, similarity selection algorithm based). We concluded

the discussion on clustering algorithms with regression testing

by a comparative study with black-box regression category. We

have also discussed the concept of Similarity measures which

proves to be the most important criteria for regression

clustering.

The further work enhanced and expanded for the automation

of clustering deviations for black-box regression testing using

Hierarchical logical classification (HLC) algorithm.

REFERENCES

[1] M. Harrold and A. Orso, “Retesting software during

development and maintenance,” in Proc. Frontiers of Software

Maintenance, 2008 (FoSM 2008), 2008, pp. 99–108.

S. Gomathi et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,6-10

© 2015-19, IJARCS All Rights Reserved 10

[2] S. Yoo and M. Harman, “Regression testing minimisation,

selection and prioritisation: A survey,” Softw. Test., Verif.,

Rel., vol. 22, no. 2, pp. 67–120, Mar. 2012.

[3] Manish Verma, Mauly Srivastava, Neha Chack, Atul Kumar

Diswar, Nidhi Gupta,” A Comparative Study of Various

Clustering Algorithms in Data Mining,” International

Journal of Engineering Reserch and Applications

(IJERA),Vol. 2, Issue 3, pp.1379-1384, 2012.

[4] E. Rogstad, L. Briand, E. Arisholm, R. Dalberg, and M.

Rynning, “Industrial experiences with automated regression

testing of a legacy database application,” in Proc. 27th IEEE Int.

Conf. Software Maintenance (ICSM), Sep. 2011, pp. 362–371.

[5] E. Rogstad and L. Briand, “Test case selection for black-box

regression testing of database applications,” Inf. Softw. Technol.

(IST), vol. 31, no. 6, pp. 676–686, Jun. 2013.

[6] A. Arcuri and L. Briand, “A hitchhiker's guide to statistical tests

for assessing randomized algorithms in software engineering,” in

Proc. 33rd Int. Conf. Software Engineering (ICSE), May 2011,

pp. 1–10.

[7] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, and B. Xu, “An

improved regression test selection technique by clustering

execution profiles,” in Proc. 2010 10th Int. Conf. Quality

Software (QSIC), 2010, pp. 171–179.

[8] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-

supervised clustering to improve regression test selection

techniques,” in Proc. 2011 IEEE 4th Int. Conf. Software Testing,

Verification and Validation (ICST), 2011, pp. 1–10.

[9] P. G. Sapna and H. Mohanty, “Clustering test cases to achieve

effective test selection,” in Proc. 1st Amrita ACM-W

Celebration on Women in Computing in India Ser. A2CWiC'10.,

New York, NY, USA, 2010, pp. 15:1–15:8.

[10] Y. Liu, K. Wang, W. Wei, B. Zhang, and H. Zhong, “User-

session-based test cases optimization method based on

agglutinate hierarchy clustering,” in Proc. 2011 Int. Conf.

Internet of Things and 4th Int. Conf. Cyber, Physical and Social

Computing, Ser. ITHINGSCPSCOM'11, IEEE Computer

Society, Washington, DC, USA, 2011, pp. 413–418.

[11] J. Jones and M. Harrold, “Test suite reduction and prioritization

for modified condition/decision coverage,” IEEE TSE, vol. 29,

no. 3, pp. 193–209, 2003.

[12] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold, “Prioritizing

test cases for regression testing,” IEEE TSE, vol. 27, no. 10, pp.

929–948, Oct. 2001.

[13] B. Beizer, Black-Box Testing. New York, NY: John Wiley and

Sons, 1995.

[14] G. Rothermel and M. J. Harrold, “Analyzing regression test

selection techniques,” IEEE TSE, vol. 22, no. 8, pp. 529–551,

Aug. 1996.

