
Volume 7, No. 7, Nov-Dec 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1

ISSN No. 0976-5697

An Improved Code Clone Tracking Approach in Evolving Software

Nadia Nahar
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

Sujon Ali
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

Md. Nurul Ahad Tawhid

Institute of Information Technology
University of Dhaka
Dhaka, Bangladesh

Abstract: Copying code fragments and then reusing those by pasting with or without modifications or adaptations are common activities in
software development. This type of reuse approach of existing code is called code cloning and the pasted code fragment is called a clone of the
original. Several studies show that about 5% to 20% of software systems can contain duplicated code, causing modification of all the fragments
if a bug is detected in one code fragment. Although being a prime issue in software maintenance, refactoring of certain clones are not desirable
and there is a risk of removing those. However, it is also widely agreed that clones should at least be detected and monitored across successive
versions. Clone Region Descriptor (CRD) is an existing way for monitoring clones in evolving software systems. However, it has robustness
issues for changes in code nesting level and block matcher parts called as anchors. This research works with overcoming these limitations by
improving the CRDs through making those more abstract and adding more metrics for resolving block matching conflicts. The justification of
the new approach is done by showing two case studies on the two proposed improvements.

Keywords: code clone; clone region descriptor; clone tracker; clone monitoring;

I. INTRODUCTION

Code clones are the duplicate or similar code blocks in the
source code. These are mostly generated because of the habit of
programmers to reuse code through copy & paste [1]. The
presence of code clones in a system means that identical or
similar logic in the code is not co-located [2]. Studies [7], [6]
show that code clones occupy 7-23% of the code, and even in
extreme case [8], can occupy 59% of the code. Code clones are
considered to be an obstacle to software maintenance. Various
approaches have been proposed for code clone detection and
visualization [6], [9].

Normally, code clones considered harmful [10] for software
system because, code cloning may duplicate faulty code
regions, resulting in the multiple occurrence of same bug
problem, where solved bugs seems to reappear as cloned code
gets executed [4]. This increases the software maintenance
work because bugs have to be resolved several times. Again
presence of code clones means that duplicate or similar code is
not co-located, which enforces to modify multiple sections of
code reliably [5]. Otherwise clone regions may lead to
regression faults. Some researchers advocated the removal of
clones through source code refactoring [14]. For these reasons,
many researches have done on the detection [10, 17, 18] and
removal of code clones from software systems [19, 20].
However, it is not always possible to completely remove code
clones due the associated risks [3, 11, 15]. Rajapakse and
Jarzabek [13] show that co-locating code clones can be
inefficient and difficult for understanding. Also refactoring
code clones can increase running time [12]. In this situation,
the code clone tracking needs to be done for monitoring the
code clones in different versions of software, in order to
maintain the consistency of the code.

There are many situations in which it may not be cost
effective or even possible to refactor code clones. Kapser and
Godfrey [21] showed several circumstances where code
duplication seems to be a beneficial design option, like
duplication in exploratory development or experimental
changes to core subsystems. However, accepting the presence
of code clones does not mitigate their caused problems. Thus, a
technique is needed for documenting and monitoring clones in
evolving software as well as for locating clone regions
independent from specifications based on lines of source code,
annotations, or other similarly fragile markers. A handful of
tools to manage and support consistent modification to clone
regions have been developed: such as, CReN [25], LAPIS [26],
CodeLink [27]. However, tools like LAPIS and CReN
characterize clone regions using character offsets or line
ranges, and rely exclusively on the Integrated Development
Environment (IDE) to update the location of the clone regions.
So, modifications that change the line ranges of a clone region,
or refactoring, such as pulling up a method to its superclass,
may invalidate the clone relationships if performed outside the
host environment. Similarly tools like CCFinder [10], NiCad
[23], Simian [24] provide large information about the clones
but those information is too much for users to use. To be
effective, clone management techniques require a
representation that is robust to evolutionary changes and
applicable to both existing and future source code.

Clone genealogy is one method to help tracking and
managing clones in evolving systems. Duala-Ekoko et al. [2]
proposed an abstract Clone Region Descriptor (CRD) for
tracking clones in evolving software systems. CRD describes
the clone instances within methods in such a way that it is
independent of the exact text or their location in the code. They
developed an Eclipse plug-in named CloneTracker, which
identifies the clone region in a code base for a given CRD

Nadia Nahar et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,1-5

© 2015-19, IJARCS All Rights Reserved 2

through a series of automatic searches. Although CloneTracker
showed better performance but it has some limitations like
CRDs become invalid for changes in code nesting level or
small changes in the CRDs anchor string. To overcome those
limitations, we have proposed two improvements in CRDs: one
improvement of block anchor and another improvement of CM.
experimental result shows that the improved CRD was able to
identify the clone regions in which the original clone tracker
failed to track the clone.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 describes how the
CloneTracker tools work and its limitations. Section 4
describes our proposed methods to overcome the limitations of
the CloneTracker tool. Section 5 describes our study results.
Section 6 discusses and summarizes our work.

II. RELATED WORK

A substantial amount of research has been dedicated to
code cloning in recent years. Our approach is related to the
following research fields:

A. Clone Detection

A huge amount of work exists on techniques to efficiently
detect and analyze clones in source code [10, 17, 18]. In this
approach, a clone detection tool takes the source code of a
software system as input, pre-processes the text like breaking
lines into tokens and removing nonessential differences, and
finally performs a similarity analysis on the converted input. In
CCFinder tool, Kamiya et al. provide a detailed description of
this type of clone detection technology [10]. Simian, a text-
based technique compares entire lines to each other, with little
preprocessing of the text. Successive lines are then clustered to
form larger clone regions. Abstract Syntax Tree (AST) based
approaches, such as SimScan, transform the code into an AST,
and execute a pairwise comparison of the nodes to identify
similar subtrees. DECKARD transforms the code into a parse
tree, and represents subtrees with numerical vectors. To detect
clone, those numerical vectors are clustered using Euclidean
distance, and subtrees having vectors in the same cluster are
reported as clones.

B. Clone Management

Duala-Ekoko et al. [3] introduce a tool named
CloneTracker that can provide the developers with the assists to
track evolutionary clone groups. It uses CRD, a light-weight
clone region descriptor to generate the correspondence between
the clone groups in the successive versions. Another tool
named JSync was introduced by Nguyen et al. [28] to detect the
code clone and to make consistency changes when any change
made in cloned code. Lin et al. [29] proposed an interactive
approach to assist the developers to edit and modify copy &
paste code. CCSync [30] reduces the harmfulness of editing
code clones by synchronizing code clones whose structures are
quite different.

C. Clone Genealogy

Kim et al. [31] present the clone genealogy, which
associates related clone groups that have originated from the
same ancestor clone group. In addition, the genealogy holds
information about how each element in a clone group has
changed with respect to other elements in the same group. They
develop a Clone Genealogy Extractor (CGE), which integrates
CCFinder clone detector, to get a software systems clone
genealogy. Using CGE, they research how each clone region
has evolved. They also find that some clones cannot be

refactored, but CGE can help clone maintenance using clone
genealogy information.

Saha et al. [32] extended the study by Kim. They develop a
prototype tool named gCad and evaluate it on 17 open source
systems in four different programming languages. Their
findings is same with Kim that clones may not always be
dangerous in software maintenance, and clone’s study need
focus on tracking and managing clones in evolving system
instead of refactoring them.

III. CLONETRACKER

Duala-Ekoko et. al. proposed a clone tracking approach to
develop a technique for documenting and monitoring clones in
evolving software [2]. The methodology and the outcome of
the approach are described briefly in this section.

A. Methodology

First of all, a way to describe clone regions within methods
was proposed, named as Clone Region Descriptor (CRD),
which was independent from the exact text of the clone region
or its location in a file. It was a lightweight and abstract
description of the location of a clone region in a code base.
CRD represented the clone regions by providing the top level
information (file, class, method) along with nested block
descriptions (block type - for, while, if, switch, try, catch, etc.,
anchors - terminating statement for loops, branching predicate
for if, exception list for catch, etc.). Additionally, a
Corroboration Metric (CM) was provided with each level for
resolving conflicts (same CRDs for different code, which were
not clone). Here, CM was calculated by simply adding the
cyclomatic complexity of a block with the fan-out of the block.

A clone region lookup algorithm was proposed for
searching the clone regions automatically in the code base. It
relied on the Abstract Syntax Tree (AST) representation of the
code. First the root AST node was identified by using the file,
class, and method name in the CRD. Then the branches were
traversed to find the leaf block. The conflicts were resolved by
comparing CM. Finally, a simultaneous editing approach was
proposed that relies on the clone region lookup algorithm with
additional computation to map an individual line within a clone
region to the corresponding line in another clone region. The
line mapping technique was based on the Levenshtein Distance
(LD). It compared the lines to have a similarity of at least a
threshold simth with each other, for being mapped.

B. Implementation and Result

The approach was implemented as a plugin of eclipse
named as CloneTracker [3]. For analyzing the efficiency of
CloneTracker, it was applied on five open-source projects. A
total of 1184 clone groups consisting of between 2 and 9 clone
regions (inclusively), for a total of 3275 clone regions, was
monitored using it. A large majority of clone regions (96%)
were correctly tracked by the CRDs. 81% of the conflicts could
be resolved by the CM. The simultaneous editing feature also
has a high success rate of 80%.

C. Limitations

The identified limitations of the tool are –
 CRDs are invalidated for changes that simply remove a

nesting level
 Associating else branches with the closest if prevents it

from discriminating between the two types of blocks
 Storing anchors as strings implies that even small

changes to the code in an anchor will invalidate the
CRD. These limitations decrease the robustness of the
CRDs.

Nadia Nahar et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,1-5

© 2015-19, IJARCS All Rights Reserved 3

IV. PROPOSED IMPROVEMENTS

From the above mentioned limitations, in this research,
several improvements are proposed. Here, the string matching
of anchors is focused for improvement. Also, the improvement
of CM is another focus of this work. The existing accuracy of
conflict resolution using CM is 81%. Thus, there is scope of
improvement for the remaining 19% of the conflicts. The
improvements are reported in details here.

A. Improvement-1: Improvement of block anchor

The blocks of CRDs are represented by block type, anchor
and CM. The anchors are stored as strings, and matched to the
source code blocks using native string match. This might work
in case of matching with the source code of the same version as
the generated CRDs. However, the anchors may not remain the
same in the next versions. Even small changes in the anchors
will affect the matching and the CRDs will be invalidated.

One of the most expected changes in the anchors is the
refactoring of variable names. In the matching of the anchors,
the variable names should not have any effect as these names
do not have any significance in the code clones. Thus, as an
improvement, a new field is introduced in describing the
blocks, named as abstract anchor. These abstract anchors
contain the anchors that are independent of the variable names.
The field will come into action when the block anchors could
not be matched with the source code due to changes in new
version.

To be described from the technical point of view, the
variable names are eliminated from the block anchors, and
stored in abstract anchors. While looking up for the CRDs, at
first the anchors are matched in code. For mismatch of the
anchors, the abstract anchors are matched. Thus, this
improvement provides an extra level of finding of the CRDs in
code, letting those not to be invalidated for changes in variable
names.

B. Improvement-2: Improvement of CM

In CloneTracker, CM is calculated by adding the
Cyclomatic Complexity and the fan-out of the code block. Yet
the CM of different code blocks might still be the same. This is
the reason why 19% of the conflicts could not be resolved.
Thus, for covering these blocks Halstead metric is added to the
CM. The reason behind considering Halstead metric in spite of
the other code metrics is described here.

The Cyclometic Complexity is the quantitative measure of
the number of linearly independent paths in source code. It
cannot measure the entropy of the program. Thus, Halstead
metric is used to measure the program difficulty based on the
number of operators and operands. The combination of
Cyclometric Complexity, Halstead metric, and fan-out can
measure the complete complexity of the program. This is why
Halstead metric is added to the calculation of CM.

V. RESULT ANALYSIS

The approach of CloneTracker [2] was justified by using
the tool on five open-source projects. Thus, those projects were
also collected to justify the improved tool. Then the tool was
evaluated on the projects. Also, the limitations of the tool were
analyzed.

A. Environmental Setup

The tool is developed in Java programming language. The
equipment used to develop the prototype are as follows:

 Eclipse Luna (4.4.1): java IDE for implementation

 ASTParser: static code analyzer
 Simian: clone detection tool

B. Data Collection

Different versions of the five mentioned projects in [2] have
been collected. The projects and the collected versions are
shown in Table I. Among these project versions, the versions
that were used in [2] are JBossAOP 4.0, JEdit 4.0, FreeMind
0.8.0, Ant 1.6.5, JCommander 0.6.4. The exact versions of
JEdit, FreeMind and Ant were found, and used as subject
systems. However, for JBossAOP and JCommander, the
mentioned version source codes were not found. Thus, for these
two, version 2.1.8.GA and 1.3.4 have been used accordingly.

Table I. Experimented Projects

Sr. No. Project Name Versions
1 FreeMind 0.0.2 – 1.1.0

2 JBossAOP 2.0.0.alpha5 – 2.1.8.GA

3 JEdit 2.4pre1 – 5.2pre1

4 Ant 1.5.2 – 1.9.6

5 JCommander 1.1 – 1.48

C. Evaluation

For evaluating the improvements in the CloneTracker, two
case studies are conducted for the two reported improvements.
The case studies are described here.

1) Case Study-1 (Improvement of block anchor): For
conducting the first case study, a clone group of the project
JCommander (Table 1) is taken. The clone group contains two
clone regions. The regions are –

 file: \jcommander–master\jcommander-

jcommander1:34\src\main\java\com\beus
t\jcommander\JCommander:java,
line: 1288 – 1292

 file: \jcommander–master\jcommander-
jcommander1:34\src\main\java\com\beus
t\jcommander\Parameterized:java,
line: 137 – 141

The CRDs of the clone regions are generated using both

CloneTracker and the improved version of it. The generated
CRDs of the 1st clone region by these two CloneTracker
versions are –

CRD using CloneTracker
JCommander.java, JCommander, 665
convertValue(Parameterized parameterized, Class type, String
value), 51
CATCH, IllegalAccessException e, 3
CATCH, InvocationTargetException e, 3

CRD using Improved CloneTracker
JCommander.java, JCommander, 825.4422604422605
convertValue(Parameterized parameterized, Class type, String
value), 101.07345739471106
CATCH, IllegalAccessException e: ’IllegalAccessException e’,
47.388910581803984
CATCH, InvocationTargetException e:
’InvocationTargetException e’, 47.49260987942435

In these two CRDs, IllegalAccessException e and

InvocationTargetException e are the anchors. And in the
generated CRD of the improved CloneTracker,
IllegalAccessException and InvocationTargetException are the

Nadia Nahar et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,1-5

© 2015-19, IJARCS All Rights Reserved 4

abstract anchors. These CRDs were looked up in next version
(1.35) of JCommander using the lookup algorithm. For testing
the efficiency of the improved CloneTracker, the clone region
of this version was slightly changed. The variable names of the
anchor, e was changed to ex. The regained clone regions by the
lookup algorithms of CloneTracker is –

 file: \jcommander–master\jcommander-

jcommander- 1:34\src\main\java\com
\beust\jcommander\JCommander:java,
from line- 500000 to-0

 file: \jcommander – master\jcommander -
jcommander -
1:34\src\main\java\com\beust\jcommand
er\JCommander:java,
from line-1289 to-1294

Here, it can be seen that the regained region of
CloneTracker failed to identify the line range, as it provides a
fake line range of (500000-0). On the contrary, the improved
CloneTracker successfully identified the line ranges (1289-
1294).

2) Case Study-2 (Improvement of CM): In this case study,
the efficiency of the new CM calculation is measured. For this
measurement, the following code block is analyzed as shown
in Figure 1.

Suppose, in the code block, a clone region is -

 file: ..\CMTest:java, from line-8 to-14

The CRD of this clone region using CloneTracker is –
CMTest.java, CMTest, 4
testMethod(), 3
FOR, i <15, 1

The improved CRD of this clone region is –
CMTest.java, CMTest, 12.333333333333332
testMethod(), 8.14851485148515
FOR, i <15: ’<15’, 4.656716417910447

Figure 1. Sample Code Block

Now, while looking up for the CRD in the code, a conflict
is generated due to similar CRDs of region 8-14, and 15-17.
The CRD of region 15-17 using CloneTracker is –

CMTest.java, CMTest, 4

testMethod(), 3
FOR, i <15, 1

Thus, it can be seen that the conflicts cannot be resolved
due to the same CM values in these two CRDs (CRD of line
range 8-14 and 15-17). However, the generated CRD of range
15-17 using the improved CloneTracker is –

CMTest.java, CMTest, 12.333333333333332
testMethod(), 8.14851485148515
FOR, i < 15: ‘< 15’, 4.0

The CM (4.0) of this for block (15-17) in this CRD is different
from the CM value (4.66) of the clone region for block (8-14).
Thus, the conflict is resolved in the improved CloneTracker by
using the new CM calculation.

VI. CONCLUSION

Cloned code in software systems creates extra work for
developers and can increase the risk of introducing regression
faults during software maintenance. However, eliminating
certain clone groups from a software system is not always
possible or practical.

Duala-Ekoko et. al. proposed a clone tracking method for
monitoring important clone regions as a system evolves. They
implemented a system, called CloneTracker that can
automatically generate abstract representations for clone
regions using Clone Region Descriptors (CRDs), which
identify clone regions at the granularity of code blocks using
the structural properties, lexical layout, and similarities of the
clone region. However, the CRD definition has some
limitations in detecting clone regions if the nesting levels are
changed or anchor string changed. We have proposed remedy
of those limitations for improving clone monitoring. The
experimental result shows that the improved CRD can track
those clone regions, in which the original CRD failed.

VII. REFERENCES

[1] R. Koschke, R. Falke, and P. Frenzel, "Clone detection
using abstract syntax suffix trees," In 2006 13th Working
Conference on Reverse Engineering, pp. 253-262. IEEE,
2006.

[2] E. Duala-Ekoko, and M. P. Robillard, "Tracking code
clones in evolving software," In 29th International
Conference on Software Engineering (ICSE'07), pp. 158-
167. IEEE, 2007.

[3] E. Duala-Ekoko, and M. P. Robillard, "Clonetracker: tool
support for code clone management," In Proceedings of
the 30th international conference on Software
engineering, pp. 843-846. ACM, 2008.

[4] L. Aversano, L. Cerulo, and M. Di Penta, "How clones are
maintained: An empirical study," In 11th European
Conference on Software Maintenance and Reengineering
(CSMR'07), pp. 81-90. IEEE, 2007.

[5] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger, "Relation
of code clones and change couplings," In International
Conference on Fundamental Approaches to Software
Engineering, pp. 411-425. Springer Berlin Heidelberg,
2006.

[6] A. K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein, "Pattern matching for clone and concept
detection," In Reverse engineering, pp. 77-108. Springer
US, 1996.

[7] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J.
Hudepohl, "Assessing the benefits of incorporating

Nadia Nahar et al, International Journal of Advanced Research in Computer Science, 7 (7), Nov–Dec, 2016,1-5

© 2015-19, IJARCS All Rights Reserved 5

function clone detection in a development process," Proc.
International Conference on Software Maintenance, IEEE
Press, 1997, pp. 314-321.

[8] S. Ducasse, M. Rieger, and S. Demeyer, "A language
independent approach for detecting duplicated code,"
Proc. IEEE International Conference on Software
Maintenance (ICSM'99), IEEE Press 1999, pp. 109-118.

[9] Y. Zhang, H. A. Basit, S. Jarzabek, D. Anh, and M. Low,
"Query-based filtering and graphical view generation for
clone analysis." Proc. IEEE International Conference on
Software Maintenance (ICSM 2008), IEEE Press 2008,
pp. 376-385.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: a
multilinguistic token-based code clone detection system
for large scale source code," IEEE Transactions on
Software Engineering Vol. 28, no. 7, pp. 654-670, 2002.

[11] G. Zhang, X. Peng, Z. Xing, and W. Zhao, "Cloning
practices: Why developers clone and what can be
changed," Proc. 28th IEEE International Conference on
Software Maintenance (ICSM 2012), IEEE Press 2012,
pp. 285-294.

[12] L. Aversano, L. Cerulo, and M. Di Penta, "How clones are
maintained: An empirical study," Proc. 11th European
Conference on Software Maintenance and Reengineering
(CSMR'07), IEEE Press 2007, pp. 81-90.

[13] C. D. Rajapakse, and S. Jarzabek, "Using server pages to
unify clones in web applications: A trade-off analysis," In
29th International Conference on Software Engineering
(ICSE'07), IEEE Press 2007, pp. 116-126.

[14] M. Fowler, Refactoring: improving the design of existing
code. Pearson Education India, 2009.

[15] M. Kim, L. Bergman, T. Lau, and D. Notkin, "An
ethnographic study of copy and paste programming
practices in OOPL," Proc. International Symposium on
Empirical Software Engineering (ISESE'04), IEEE Press
2004, pp. 83-92.

[16] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, "Deckard:
Scalable and accurate tree-based detection of code
clones," Proc. 29th international conference on Software
Engineering, IEEE Computer Society, 2007, pp. 96-105.

[17] A. H. Basit, and S. Jarzabek, "Efficient token based clone
detection with flexible tokenization," Proc. 6th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations
of software engineering, ACM 2007, pp. 513-516.

[18] R. Tairas, "Bibliography of code detection literature."
(2008).

[19] R. Koschke, "Identifying and removing software clones."
Software Evolution, Springer Berlin Heidelberg, pp. 15-
36, 2008.

[20] C. Kapser, and M. W. Godfrey, ""Cloning considered
harmful" considered harmful." Proc. 13th Working
Conference on Reverse Engineering, IEEE Press 2006,
pp. 19-28.

[21] J. R. Cordy, and C. K. Roy, "The NiCad clone detector,"
IEEE 19th International Conference on Program
Comprehension (ICPC), IEEE Press 2011, pp. 219-220.

[22] M. S. Uddin, C. K. Roy, and K. A. Schneider, "Simcad:
An extensible and faster clone detection tool for large
scale software systems." Proc. 21st International
Conference on Program Comprehension (ICPC), IEEE
Press 2013, pp. 236-238.

[23] P. Jablonski and D. Hou, "CReN: a tool for tracking copy-
and-paste code clones and renaming identifiers
consistently in the IDE," Proc. OOPSLA workshop on
eclipse technology eXchange, ACM 2007, pp. 16-20.

[24] R. C. Miller, and B. A. Myers, "Interactive Simultaneous
Editing of Multiple Text Regions," In USENIX Annual
Technical Conference, General Track 2001, pp. 161-174.

[25] M. Toomim, A. Begel, and S. L. Graham, "Managing
duplicated code with linked editing," IEEE Symposium on
Visual Languages and Human Centric Computing, 2004,
pp. 173-180.

[26] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi,
and T. N. Nguyen, "Clone management for evolving
software," IEEE Transactions on Software Engineering
Vol. 38, no. 5, pp. 1008-1026, 2012.

[27] Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao,
"Clone-based and interactive recommendation for
modifying pasted code." Proc. 10th Joint Meeting on
Foundations of Software Engineering, ACM 2015, pp.
520-531.

[28] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H.
Mei, "Can I clone this piece of code here?," Proc. 27th
IEEE/ACM International Conference on Automated
Software Engineering, ACM 2012, pp. 170-179.

[29] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, "An
empirical study of code clone genealogies," ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
187-196.

[30] R. K. Saha, C. K. Roy, and K. A. Schneider, "gCad: A
Near-Miss Clone Genealogy Extractor to Support Clone
Evolution Analysis," ICSM 2013, pp. 488-491.

