
��������	�
����	�
������������

��������������
������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved 345

345
ISSN No. 0976-5697

Web Usage Mining using Improved FP Tree Algorithm with Customized Web Log Preprocessing

Prateek Gupta*
Comp. Sc. & Engg.,

RGPV , SSSIST

Sehore, Madhya Pradesh , India

prateek_guptace@hotmail.com

Surendra Mishra
Comp. Sc. & Engg.,

RGPV , SSSIST

Sehore, Madhya Pradesh, India

smishra1lnct@gmail.com

Abstract: Web Usage Mining mines Web access logs for interesting patterns in WWW traffic. Web Usage Mining discovers interesting patterns

in accesses to various Web pages within the Web space associated with a particular server. The Web Usage Mining architecture divides the

process into two main parts- the first part includes preprocessing, transaction identification, and data integration components. The second part

includes the largely domain independent application of generic data mining and pattern matching. Input to the Web usage Mining process is

Web Server Logs, Error logs, User Cookies and Client Cache Records. This paper contains an efficient improved iterative FP Tree algorithm for

generating frequent access patterns from the access paths of the users. The frequent access patterns are generated by backward tree traversals.

This operation will take less time compare to the existing algorithms. Paper also composed of customized web log preprocessing for mined in

different applications.

Keywords: Web Usage Mining, FP Tree, Web Logs, Web Log Preprocessing, Customized Web Log Preprocessing

I. INTRODUCTION

The Web Mining [1] is the application of Data Mining

techniques to automatically discover and extract information

from the web. Web usage mining is the task of discovering

the activities of the users while they are browsing and navi-

gating through the Web. The aim of understanding the navi-

gation preferences of the visitors is to enhance the quality of

electronic commerce services (e-commerce), to personalize

the Web portals [2] or to improve the Web structure and

Web server performance Web usage mining [3], from the

data mining aspect, is applying data mining techniques to

discover usage patterns from Web data. Examples of appli-

cations of such knowledge include improving designs of

web sites, analyzing system performance as well as network

communications, understanding user reaction and motiva-

tion, and building adaptive Web sites.

The process of Web usage mining also consists of three

main steps: (i) preprocessing, (ii) pattern discovery and (iii)

pattern analysis.

In this work pattern discovery means applying the in-

troduced frequent pattern discovery methods to the log data.

For this reason the data have to be converted in the prepro-

cessing phase such that the output of the conversion can be

used as the input of the algorithms. Log files are stored on

the server side, on the client side and on the proxy servers.

Logs are processed in Common Log Format. Pattern analy-

sis means understanding the results obtained by the algo-

rithms and drawing conclusions. In pattern discovery phase

methods and algorithms used have been developed from

several fields such as statistics, machine learning, and data-

bases. This phase of Web usage mining has three main op-

erations of interest: association (i.e. which pages tend to be

accessed together), clustering (i.e. finding groups of users,

transactions, pages, etc.), and sequential analysis (the order

in which web pages tend to be accessed). Pattern analy-

sis is the last phase in the overall process of Web usage min-

ing.

In this phase the motivation is to filter out uninteresting

rules or patterns found in the previous phase.

If all the transactions are different i.e. no common

access paths then Apriori algorithm is good otherwise FP-

tree Algorithm is good [4]. Apriori Algorithm will take

more time and more memory compare to the FP-tree algo-

rithm. The partition approach is good if data base size is

very large; if database size is less then it will work as Apri-

ori algorithm [6]. In this paper we have used two main

tasks-Customized web log preprocessing and Improved FP

Tree Algorithm

II. EXISTING WORK

A. Web Log Preprocessing

The inputs to the preprocessing phase are the log and

site files. The outputs are the user session file, transaction

file Web servers register a Web log entry for every single

access they get, in which important pieces of information

about accessing are recorded, including the URL requested,

the IP address from which the request originated, and a

timestamp. A log file can be located in three different plac-

es-Web Servers, Web proxy Servers, and Client browsers

[8]. The most popular log file format is the Common Log

Format (CLF)-

<ip><base url><date><method><file><protocol><code>

<bytes> <referrer><user agent>

Preprocessing [9] contains four sub steps: Data Clean-

ing, User Identification, Session Identification and Format-

ting.

Prateek Gupta et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,345-348

© 2010, IJARCS All Rights Reserved 346

Figure-1 Preprocessing Steps

B. FP Tree Algorithm

The FP-tree algorithm avoids candidate generation

steps [7]. The main idea of the algorithm is to maintain a

frequent pattern tree (FP-Tree) of the database [5]. It is an

extended prefix-tree structure, storing crucial quantitative

information about frequent sets. The tree nodes are frequent

items and are arranged in such a way that more frequently

occurring nodes will have a better chances of sharing nodes

than the less frequently occurring ones. The method starts

from frequent 1-itemsets as an initial suffix pattern and ex-

amines only its conditional pattern base (a subset of the da-

tabase), which consists of the set of frequent items co-

occurring with the suffix pattern. The algorithm constructs

the conditional FP-tree and performs mining on this tree. A

hash-based technique is used to reduce the size of the candi-

date k- patterns. Another variation is to reduce the number

of transactions to be scanned at higher values of k. Since a

transaction that does not contain any frequent k-pattern can-

not contain any frequent (k+1) - pattern, these types of

transactions can be marked during the Kth scanning and are

not considered in the subsequent scanning.

III. ANALYSIS OF EXISTING WORK

The existing algorithms are Apriori Algorithm, Parti-

tion Based Approach and FP-Tree algorithm, etc. All exist-

ing Algorithms have their own advantages and drawbacks.

If all the transactions are different then Apriori algorithm is

good otherwise FP-tree Algorithm is good. If the user access

paths are common then FP-tree algorithm is very efficient. It

stores all data in the compressed format. So memory re-

quirement for this algorithm is less compare to the other

algorithms. If all the transactions are different the tree will

become complex for finding frequent patterns. In this case

Apriori Algorithm is more efficient than the FP- tree algo-

rithm. The partition algorithm is efficient for large size data

bases. This algorithm uses different algorithms for generat-

ing local patterns.

In FP-tree Algorithm, the tree will generate one branch

for each transaction. The tree size will become complex for

storing in the memory. The FP-tree Algorithm will take

more time for recursive calls in the algorithm. For generat-

ing Frequent Patterns the pointer have to traverse all the

nodes. So it will take more time.

Existing preprocessing method gives output for some

particular application, but different application requires dif-

ferent type of preprocessing to get desired output.

IV. PROPOSED WORK

A. Customized Web Log Preprocessing

Different web application requires different preprocess-

ing of logs. Multimedia application requires log of multime-

dia link request like log having jpg, mpg, and gif etc. re-

source. All application removes error log. E-commerce ap-

plication requires different user requests.

We introduced one more step in traditional preprocess-

ing steps, before data cleaning, Customization. In this step

we clean log on the basis of user requirement for applica-

tion.

Figure-2 Customized Preprocessing Steps

B. Improved FP Tree Algorithm

There are many existing algorithms for generating fre-

quent access patterns from the access paths. But they have

less efficient in terms of execution time and memory re-

quirement. The proposed algorithm is modification of FP-

tree Algorithm, but this algorithm will not use recursion for

generating Frequent Patterns. So this Algorithm will take

less execution time for access paths which are not having

uncommon items.

The main idea of the algorithm is to maintain a frequent

pattern tree of the database. It is an extended prefix-tree

structure, storing crucial quantitative information about fre-

quent patterns. This algorithm scans the data base once for

generating page table. This table stores the information

about web pages, the number of times the user accessed that

web page and the pointer field that stores the reference of

that webpage in the pattern base tree. The page table nodes

are sorted according to the page count. The tree nodes are

frequent items and are arranged in such a way that more

frequently occurring nodes will have a better chances of

sharing nodes than the less frequently occurring ones. The

method starts from frequent 1-itemsets as an initial suffix

pattern and examines only its conditional pattern base (a

subset of the database), which consists of the set of frequent

items co-occurring with the suffix pattern. The page table

nodes are used for generating frequent access patterns. Start

from the page table seqptr, which stores the reference of the

tree node then traverse the tree from bottom to the root

node. Add the entire nodes which are in the traversal with

the condition pagecount > min_sup. If this condition is not

satisfied then move to the next path in the tree. Generate all

the frequent patterns of the users by using backward traver-

sals of the tree. This algorithm is divided into two steps:

Step 1: Construct frequent access pattern tree according to

access paths derived from user session files, and records the

access counts of each page.

Input- an Access Paths database S, and minimum support

threshold min_sup

Output- The Page Header Table, FP- Tree.

Procedure FAP_Tree (T, p)

begin

 Create_tree (T);

 //construct the root of FAP-Tree signed with “null”

 While (P<>null) do

 begin

Raw

Web

Customiza-

tion
Data Clean-

ing

User

Identification

Database of

Cleaned Log

Session

Identification

Raw Web

Log
Data Cleaning User Identifica-

tion

Session Identifi-

cation
Database of

Cleaned Log

Prateek Gupta et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,345-348

© 2010, IJARCS All Rights Reserved 347

 If (p.name is the same as the name of T’s ancestor (n))

 begin

 Increment n.count value

 T=n;

 end of if statement

 else

 begin

 If (p.name is the same as the name of T’s child (e))

 begin

 Increment c.count value

 T=c;

 end

 else

 Insert_tree (T, p);

 //insert the new node of P into T, as a child of the

 //current node

 p=p.next;|

 end of else statement

 end of the else statement

end

Step 2: The function of FAP_growth is used to mine both

long and short access patterns on the FAP tree, which is

created in Step1.

Input: FAP_tree, min_sup = t

Output: the set of all Frequent Access Patterns: k

Procedure FAP-growth (tree, t);

 //tree is generated tree in step1

begin

 For each Ki.count>=min_sup

 //Ki is a member of the page header table

 begin

 Generate access pattern B=Ki

 K = K U B;

 P= ki.next;

 //p points to the first location of Ki in the FAP-tree

 While (p! =null) and (p.count>=min_sup) do

 begin

 // Look for each Ki’s prefix access pattern base,

 //then construct access pattern Bi by Ki prefix

 //access pattern base connecting with itself;

 If (Bi>= min_sup)

 Ki=ki U Bi;

 //adding newly generated patterns in to pattern base

 p=p.next;

 //p points to the next location of Ki in the FAP tree

 end of the while loop

 end of the for loop

end of the function

V. EXAMPLE

Assume A,BC,D,E,F,G,H,I,K are the web pages in a

particular web site. U1 is the userID and S1, S2, S3, S4 are

different sessions of that particular user. This is shown in

the below table.

Table 1: Access paths of single user in different sessions

User Name Session Name Access Path

U1 S1 A-B-C-D-B-E

U1 S2 A-B-C-D-C-B-E-G-E-C-H

U1 S3 A-B-A-C-I

U1 S4 C-I-G-I-K-I-D

The below table shows Page table for all user access paths.

Table 2 : Access paths of single user

Page Name Count

H 1

K 1

G 2

D 3

E 3

A 4

I 4

B 5

C 6

Following figure represent tree generated from access

Path

Figure-3 Tree generation from access paths

For generating Access patterns it will take one more da-

tabase scan. The tree stores all access paths in compressed

format. Each node in the tree represents the page name and

page count. Each node has two pointers to parent node and

to the child nodes. The root node is null node; the child

nodes of this root node will give all access paths. If the user

follow the same path in different session, this tree simply

increment page count instead of creating new nodes.

For generating Frequent access patterns, start from the page

table first page traverse to the tree node if it follows the be-

low condition:

 If page count>min_support:

begin

 Move header node seqptr to the treenode,

Travers the treenode to the rootnode

Move present node to next seqptr and again follow the

above two steps

End

Else

Go to next page.

�����

����

��	�

���

���

��� ����

����

���

����

����
����

����

����

����

���

Prateek Gupta et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,345-348

© 2010, IJARCS All Rights Reserved 348

VI. RESULT

The following figure shows the comparison result.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Minimum Support(%)

S
e
c
o

n
d

s Proposed

Algorithm

Existing Apriori

Algorithm

Figure-4 Existing and Proposed Algorithm results comparison

The above figure shows the comparisons of both the al-

gorithms in term of execution time. An evident from the

figure, the minimum support is less then the execution time

is more; because more number of candidate sets will be

generated. The proposed Algorithm is not generating any

candidate sets, but more number of patterns will be generat-

ed, due to this the number of tree traversals will be more.

From the above Figure 3.4 the proposed algorithm is taking

less time.

VII. CONCLUSION

Proposed algorithm will take at most two data base

scans for generating the frequent access patterns. The max-

imum tree size required is at most the number of web pages

in the website. An even faster response can be obtained if

the depth of the tree is increases, i.e. user access paths are

increased in the transactions. Further Addition of new paths

does not create any update problems, which are very com-

mon in existing algorithms. The system is also scaleable

using multiple disk storage. This scaling routine takes con-

stant time overhead for memory partition and swapping op-

erations.

ACKNOWLEDGMENTS

“Web Usage Mining using improved FP Tree algo-

rithm, with customized web log preprocessing” research is

supported by the management of SSSIST, Sehore, Madhya

Pradesh, India, We are pleased to acknowledge.

VIII. REFERENCES

[1] R. Cooly, B. Mobasher and J. Srivastava, “Web Mining

: In- formation and Pattern Discovery on the World

Wide Web” , IEEE, August 1997. Pp.558 – 566.

[2] Charu C. Aggarwal and Philip S. Yu, “An Automated

Sys - tem for Web Portal Personalization”, Proceedings

of the 28th VLDB Conference, Hong Kong, China,

2002

[3] Renáta Iváncsy, István Vajk, “Frequent Pattern Mining

in Web Log Data”, Acta Polytechnica Hungarica, Vol.

3, No. 1, 2006

[4] B.Santhosh Kumar, K.V.Rukmani, “Implementation of

Web Usage Mining Using Apriori and FP Growth Al-

gorithm”, Int. J. of Advanced Networking and Applica-

tions, Volume:01, Issue:06, (2010), Pages: 400-404

[5] Shui Wang, Le Wang, “An implementation of FP

growth algorithm based on high level data structure of

Weka-JUNG framework”, Journal of Convergence In-

formation Technology, Volume 5, Number 9, 2010

[6] Kotsiantis S, Kanellopoulos D., “Association Rules Min-

ing: A Recent Overview”, GESTS International

Transactions on Computer Science and Engineer-

ing, Vol.32 (1), 2006, pp.71- 82

[7] J. Han, J. Pei, and Y. Yin. “Mining frequent patterns

with – out candidate generation”. IEEE, Sept.1998 pp-

365-378.

[8] K. R. Suneetha and Dr. R. Krishnamoorthi, "Identifying

User Behavior by Analyzing Web Server Access Log

File",IJCSNS International Journal of Computer

Science and Network Se-curity, VOL.9 No.4, April

2009, pp. 327-332.

[9] P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds.): The

Adap - tive Web, LNCS 4321, 2007, pp. 90–135,.

AUTHORS

Prateek Gupta received bachelor degree in Computer

Science & Engineering from Rajiv Gandhi Proudyogiki

Vishwavidyalaya, State Technological University of Mad-

hya Pradesh and pursuing Master of Technology in Com-

puter Science & Engineering from SSSIST, Sehore under

Rajiv Gandhi Proudyogiki Vishwavidyalaya. He has publish

many papers on data mining and participated in many work-

shops.

Surendra Mishra Master of Technology in Computer

Science & Engineering from SSSIST, Sehore under Rajiv

Gandhi Proudyogiki Vishwavidyalaya, State Technological

University of Madhya Pradesh. He is working as an Asst.

Professor and HoD Comp. Sc. & Engg. In SSSIST, Sehore,

Madhya Pradesh. He has published many papers on data

mining.

