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Abstract-  Grouping  the  data  according  to  their  mutual
similarities  is  called  clustering  which  is  an  unsupervised
technique.  We  have  introduced  an  improved  version  of
Support  Vector  Clustering  (SVC)  technique  with  automatic
parameter tuning in this paper.  Using Gaussian RBF kernel,
the data points are mapped into a higher dimensional feature
space.  The  objective  function  becomes  to  find  the  minimal
enclosing sphere for all data points in the kernel space. This
sphere,  when mapped back to the data space, separates into
several  components  with  irregular  boundaries,  enclosing
separate clusters of points. There are two tuning parameters in
SVC, soft margin penalty constant and width of the Gaussian
kernel  which  are  varied  and  used  to  attain  smooth  cluster
boundaries.  It  is  difficult  to  accurately select  both  of  these
parameters  manually using  k-fold  Cross  Validation.  So,  we
have  employed  an  optimization  technique  to  find  out  RBF
sigma  parameter  tuning  which  was  originally  proposed  by
Cheng Hsuan Li  et.al  for  Support  Vector  Machines  (SVM).
The optimal kernel  RBF sigma value for SVC is calculated
which  is  more  accurate  and  computationally  efficient  and
accurate compared to k-fold cross validation method. We have
performed experiments on artificial and public datasets from
UCI public repository.  Promising outcome results show that
this technique is effective in kernel parameter optimization for
cluster analysis.
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1. INTRODUCTION

Collection of unlabelled datasets with similar and dissimilar
attributes  is  often  analyzed  using  clustering  technique.  The
data and objects present in the same cluster are all but similar
to each other when compared to other clusters. So, the goal is
to  create  homogeneous  groups  of  the  data  objects.  Major
research areas of clustering are exploratory data mining and
analyzing  data  statistically  in  the  field  including  Machine
Learning, recognition of different patterns, analyzing images,
retrieval of information, bioinformatics, data compression, and
computer  graphics.  Clustering  has  an  application  in
anthropology which  was  derived  by Driver  and  Kroeber  in
1932,  also  A  Psychologist  Zubin  found  itsapplication  in

psychology [1][2]. It was also applied by Cattell in the 1943[3]
for trait theory classification in personality psychology. 

There  are  different  types  of  clustering  algorithms  such  as:
connection based clustering, centroidal based, density based,
distribution based clustering. In connectivity based clustering,
the cluster indices are decided based upon relative distances
among the objects. It is also known as hierarchical clustering.
In  centroidal  based  clustering,  clusters  are  represented  by
centroidal  vectors. For given k clusters,  k centers are found
and then individual data points are assigned respective cluster
indices  based  upon  their  relative  distances  from  those
centroids. Distribution based clustering involves grouping the
data objects depending upon their underlying data distribution
characteristics.  For  example  an  Expectation  Maximization
(EM)  algorithm  works  well  for  the  Gaussian  distribution
because  it  uses  Gaussian  model  for  clusters.  Density based
clustering  involves  grouping  of  the  data  which  has  more
density  than  rest  of  the  dataset.  Density  based  spatial
clustering of applications with noise (DBSCAN) ismostly used
algorithm of this category.

External Evaluation
It is defined as when the result of clustering is evaluated by the
data that was not used in clustering. The Rand Index  can be
computed by the following formula:

where TP =  True  positive,  TN  =  True  Negative,  FP=False
Positive,  FN = False Negative

In  recent  years,  a  modern  clustering  technique  has  been
developed, known as Support Vector Clustering (SVC) [4].  It
is  quite  efficient  in  detecting  the  clusters  with  irregular
boundaries using non linear mapping of data points into the
higher dimensional feature space using Gaussian kernel [2]. In
the  higher  dimensional  feature  space,  the  objective  is  to
include  maximum  data  points  into  the  minimum  enclosing
sphere. This sphere when mapped back into the original space
gets  split  into  different  irregular  boundary  contours  which
enclose the data points known as clusters. The performance of
SVC is based on parameters used for Gaussian kernel and soft
margin  penalty  (C)  [6][9].  Selecting  these  parameters
manually by method of k-cross validation method (CV) is very
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tiring and for large data sets it is almost impossible to get an
ideal result. In this paper an automatic technique for tuning of
the RBF kernel function parameters is proposed.

The paper is organized in 6 sections. Section 2 explains about
related works,  section 3 discusses SVC technique, section 4
explains about proposed automatic tuning for SVC, section 5
explain  experimental  results  and  section  6  discusses
conclusion and future works.

Internal evaluation

When the result of clustering is decided by the data used inside
the  cluster  itself  is  called  internal  evaluation.  This  type  of
clustering is helpful when different clusters are very different
from each other.  The Davies–Bouldin index can be evaluated
by the following formula:

where  n,  cx,σ(x),  d(ci,cj) represent  the  count  of  clusters,
centroid of x, average distance between all elements in x to
centroid(cx) and distance between ci and cj  respectively.   

2. RELATED RESEARCH

There have been studies on the automatic selection of kernel
function  parameters  recently  [5].  It  was  used  in  SVM  for
automatic  parameter  tuning  successfully.  In  [8]  a  clustering
approach  based  upon  Information  Maximization  clustering
based upon tuning parameter selection is discussed. It is based
upon  squared-loss  variant  of  mutual  information  and
eigenvalue  decomposition.   Another  advanced  method  for
automatic parameter tuning is used in [13] in context of SVM
in which the RBF kernel  function sigma value is calculated
through  optimization.  In  this  research,  we  propose  this
automation for clustering technique for  automated tuning of
parameters in SVC.

3. SUPPORT VECTOR 
CLUSTERING

The objective is to define  a sphere of the smallest radius that
can enclose the given data points in the higher dimensional
RBF kernel  feature  space  mapped by .  Thus the  goal  is  to
minimize  R2,  where  R  is  radius  of  sphere  with  respect  to
constraints 

Setting  up  the  Lagrange  function  using  the  multiplier  are
defined as follows:

To  find  out  the  dual  objective  function,  first  we  need  to
minimize  L. So calculating the partial  derivatives of  L with
respect to R, € and a we get:

(3)

(4)

(5)

Applying the Karush–Kuhn–Tucker (KKT) [14] conditions we
get complementary equation

(6)

 = 0
(7)

By using Eq. (7) it can be seen that the point xi lies outside the
feature space only if €i>0 and βi>0.  From Eq.(6) we can say
that µi=0 as €i>0, hence from Eq. (5) we can conclude  that βi
= C. This is called BSV (Bounded support vector). When € j=0
any point  x would  be  marked  on  the  surface  or  inside  the
feature space. From Eq.(7) it can be said that its image Ø(xi) is
present  on  the  boundary  of  the  feature  space  under  the
constraint  0 < βi < C. This point is known a support vector
(SV). So, now we can say that Support Vectors(SV) lie on the
boundary  whereas  the  boundary  support  vectors(BSV)  lie
outside the boundary and the rest lie inside the boundary line.
There exists no BSV’s due to constraint 3, provided that C ≥ 1.
Using the above relations we eliminate  R, a and  µj, and thus
convert the Lagrange’s form to the Wolfe’s Duals

W = ∑Ø(xj)2βj - ∑βiβjØ(xi)Ø(xj) (8)
Using Constraint,

 0 ≤ βj ≤ C, j=1, 2, 3……..N (9)

From  non  linear  SVM  extension  we  can  convert  the  dot
product of Ø(xi)·Ø(xj) by a certain Kernel function represented
by K(xi,xj). We will use the concept of kernel function in this
research paper.

(10)

where  is RBF width parameter.  The Lagrangian function W is
defined as:
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The image distance  of  each  point  x from the  center  of  the
sphere created in the feature space is represented by:

(12)
According to Eq.(4) And using kernel function :

(13)
Sphere’s radius is given by R

R = {R(xi)| xi  is SV} (14)

The boundary that encloses the points in the data space is 
defined by the set

{x| R(x) = R} (15) 

They are interpreted by us as forming cluster boundaries. In
view of equation (14), SVs lie on cluster boundaries, BSVs are
outside, and all other points lie inside the clusters.

Cluster Assignment Phase
The  theory  which  we  have  discussed  beforehand  does  not
differentiate between points of different clusters. To do this we
use a geometrical theory in which we will include  R(x), now
by using the following observation:  we have been given a pair
of data points which are from distinct clusters; so any of the
paths  which  connect  them  has  to  exit  from  the  sphere  in
feature space. Thus, a  pathway containing a segment of  the
points y such that R(y) > R  should lie within the sphere. We
end up with the definition of the adjacency matrix  Bij  among
the points xi and xj whose images lie inside or on the boundary
of the sphere in feature space:

Because of this square matrix representation during this SVC’s
cluster assignment phase, it becomes a bottleneck during the
calculations  for  the  space  and  time complexity.  So  SVC is
efficient to detect quite irregular cluster boundaries for smaller
datasets only. 
 
Comparison with K-means

Now  we  briefly  discuss  an  important  existing  clustering
method  known  as  K-means  clustering.  This  would  help  to
contrast  the  features  of  SVC  over  other  conventional
clustering methods.  In recent times there have been detailed
studies  on  them  [5].  K-means  Method  is  very  simple
unsupervised learning algorithms which help us solve a well-
known  problem  of  clustering.  In  this  we  first  differentiate

between a given data set through a definite number of clusters
(k  clusters)  and  then  name k  centers,  one  for  each  cluster.
These centers need to decide in such a way that each location
or place causes un-similar results. It is be useful to place them
at a maximum possible distance from each other. Firstly, we
need select each point from a defined data set connect it to the
closest k-center. When all the points have been connected the
early part of our job is done. Now, we need to find out new k-
centroids as barycenter of the clusters found earlier. Now that
we have found the new k-centroids we need to establish a new
binding  between  the  data  set  and  the  closest  centers.  As  a
result a loop was produced. After this we notice that the k-
center have changed their location, now as no more changes
are  done  we  observe  that  centers  do  not  move  anymore.
Finally, using this algorithm we aim to minimize an objective
function (squared error function):

where,
‘||xi - vj||’ is the Euclidean distance between xi and vj.

‘ci’ is the number of data points in ith cluster.
‘c’ is the number of cluster centers.

Limitations of K-means

1. This method of clustering is not robust to non-linear data
distribution.  It  gives  different  results  with  different
representations.  This  is  represented  in  the  form  of
coordinates.

2. To learn this algorithm we require apriori specification of
the number of k’s i.e. the cluster centers.

3. Overlapping data cannot be resolved by k-means method.
4. It only is defined for a definite mean which means it will

fail for categorized data.
5. A Cluster center cannot be chosen randomly. 
6. This algorithm is not applicable for non-linear data set. 
7. This algorithm is not able to handle noisy data as well as

outliers. 

Fig 2: k-means method fails for non-linear data set.
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Due to the above disadvantages, we choose SVC and employ
automatic  parameter  tuning  to  make  it  self-dependable
clustering algorithm. It  would take care of above limitations
and there is accurate selection of Kernel Parameters.

4. PROPOSED ALGORITHM FOR
RBF KERNEL OPTIMIZATION

Using this algorithm we propose that  one should be able to
find out  the most  ideal  parameters  for  our Kernel  Function
used in SVC. This theorem was previously used in Support
Vector  Machines  to  for  automatic  tuning  of  parameters  of
Kernel Function [5], but in this research paper we try to apply
it on SVC.

Let us assume that Ai is the set of training samples in the set i,
where  i=0,1,2…….L.[11].There are two important  properties
of  the  RBF  kernel  function:  K(xi,xi,σ)  =  1 for  all
i=1,2……….n, i.e.,  the norm of every sample in the feature
space is 1.  0<K( xi, xj ,σ )≤1  for all i,j=1,2…….,n.,  i.e., the
cosine value of two training samples and in the feature space
can be computed by and it determines the similarity between
these  two  samples.   RBF  Kernel  function:   

Where ||wi|| is the number of training samples in class i. The
parameter  should  be  determined  such  that  closes  to
1.It  is  easy  to  find  that  0  <  w( σ)  ≤  1 and  .  Hence,
the  optimal   σ  can  be  obtained  by  solving   the  Following
optimization problem:  

5. Dataset Results

Quantitative  testing  of  the  proposed  technique  is
performed  on  an  artificial  and  publically  available
datasets. The artificial dataset contains 200 points in two
dimensions as shown below in Fig 3. Using the parameter
automation approach [13] we got three clusters detected
as shown in Fig. 3.  Values of parameters are listed in the
Table 1. Fig.4 shows the optimal RBF sigma calculated
through [13] for the artificial dataset.  gives the minimum
value of  .

The  experimental  results  have  also  been  illustrated  for
other  available  at  UCI  repository  [11].  In  all  of  these
datasets, k-means clustering fails to detect the appropriate
clusters but the proposed technique achieves good results
as  shown  in  the  Table  1.  We  have  performed  the
experiment  on ten  other  standard  datasets  and  obtained
results  with high  accuracy through automatic  parameter
tuning  but  only  listing  five  of  them  due  to  space
constraints. 

The automation of RBF sigma [11] saves a great deal of
time  complexity  as  compared  to  traditional  Cross
Validation (CV) technique. The overall average clustering
accuracy from comes out to be 90% which makes it well
suitable  to  detect  clusters  of  irregular  boundaries.  K-
means  algorithm  fails  to  detect  such  irregular  clusters
successfully.

Fig 3:  Artificial dataset with 200 points using proposed
technique detected 3 clusters, with σ = 0.15

Fig 4:  RBF sigma value calculated through [13] for the
artificial dataset

Table1:  Clustering  results  on  three  datasets  where  K-
means clustering fails

Dataset Instances Sigma C Accuracy
IRIS 150 0.28 0.1 0.86

AAAI’13 150 0.11 40 0.92
Artificial 183 0.15 100 0.95
SEEDS 210 0.34 10 0.9
AAAI’14 399 0.45 12 0.87

6. CONCLUSION

RBF  sigma  parameter  optimizations  have  been
proposed in this paper for Support Vector Clustering.
For small but irregular shaped datasets, SVC is quite
efficient  to  detect  clusters  compared  to  other
conventional  algorithms  such  as  k-means.  Kernel
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parameter in SVC is done using a Chen-Hsuan et al.’s
technique  which  was  proposed  for  SVM.  Results
show  that  clusters  have  been  detected  with  high
accuracy of  average  89%. SVC although is  a  good
algorithm for clustering, but it  uses a square matrix
during  the  cluster  assignment  phase.  So  it  is  not
efficient for time and space complexity. In future we
are planning to extend SVC for massive datasets by
using advanced cluster assignment strategies.
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