
��������	�
����	�������������

��� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved 628

ISSN No. 0976-5697

Classification of SQL Injection Attacks and using Encryption as a Countermeasure.

Kuldeep Rana
B.tech (purs.)

Bhagwan Parshuram Instt. of Technology (GGSIPU)

ranakuldeep1989@gmail.com

Abstract: This paper is devoted to evaluation of the vulnerabilities of web application to the various classes of SQL injection attacks and the

countermeasures that can be used to put a check on them. The reason for the vulnerability is the use of limited set of attack pattern by the web

developers during evaluation. This paper also presents an improvement over the existing countermeasure techniques by proposing a new defence

mechanism that includes encryption and decryption of data entered in the login parameters.

Keywords: SQL Injection, Countermeasure, Encryption, Web Applications, Security

I. INTRODUCTION

SQL is short for Structured Query Language and is a widely

used database language, providing means of data manipulation

(store, retrieve, update, delete) and database creation. Almost

all modern Relational Database Management Systems like MS

SQL Server, Microsoft Access, MSDE, Oracle, DB2, Sybase,

MySQL, Postgres and Informix use SQL as standard database

language.�Queries are the primary mechanism for retrieving

information from a database and consist of questions presented

to the database in a predefined format. In SQL, these queries

are of two types- Data Definition Language Statements (DDL)

and Data Manipulation Language statements (DML). DDL

statements can modify the structure of databases while DML

statements can manipulate the contents of databases.

SQL injection is a code-injection attacks in which input data is

included in dynamically constructed SQL query and treated as

SQL code. For database-reliant web sites, SQL injection

vulnerabilities are frequently exploited by attackers since they

are easy to find and penetrate. A study conducted by the

Gartner Group found that on over 300 tested web sites, 97%

were vulnerable to SQL injection attacks. By detecting the

SQL injection vulnerabilities, attackers commonly extract and

modify data by constructing DDL and DML queries. [2]

This paper presents various defense mechanisms that can be

used as countermeasures to the SQL injection attacks. It

proposes a new approach to prevent attacks made to the

system i.e. using encryption and decryption techniques.

II. TYPES OF SQL INJECTION ATTACKS

The impact of SQL injection attacks may vary from gathering

of sensitive data to manipulating database information, and

from executing system-level commands to denial of service of

the application. The impact also depends on the database on

the target machine and the roles and privileges the SQL

statement runs with. There are four main categories of SQL

Injection attacks against databases:-

A. SQL Manipulation

Manipulation is process of modifying the SQL statements by

changing the where clause of the SQL statement to get

different results. This type of attack is the simplest form of

attack and can be used easily by even the naïve hackers.

Another way of implementing SQL Injection using SQL

Manipulation method is by using various set operators such as

UNION, INTERSECT.

B. Code Injection

In general code injection is the exploitation of a computer bug

that is caused by processing invalid data. It can be used by an

attacker to introduce (or "inject") code into a computer

program to change the course of execution. The results of a

code injection attack can be disastrous. SQL code injection is

process of inserting new SQL statements or database

commands into the vulnerable SQL statement. One of the code

injection attacks is to append a SQL Server EXECUTE

command to the vulnerable SQL statement. This type of attack

is only possible when multiple SQL statements per database

request are supported.

C. Function Call Injection

Function call injection is process of inserting various database

function calls into a vulnerable SQL statement. These function

calls could be making operating system calls or manipulate

data in the database.

D. Buffer Overflows

Buffer overflow is an anomaly where a program, while writing

data to a buffer, overruns the buffer's boundary and overwrites

adjacent memory. Buffer overflows can be triggered by inputs

that are designed to execute code, or alter the way the program

operates. This may result in erratic program behavior,

including memory access errors, incorrect results, a crash, or a

breach of system security. They are thus the basis of many

software vulnerabilities and can be maliciously exploited.

Attackers use buffer overflow to corrupt the execution stack of

a web application. It can be caused by using function call

Kuldeep Rana et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,628-630

© 2010, IJARCS All Rights Reserved 629

injection. For most of the commercial and open source

databases, patches are available. This type of attack is possible

when the server is un-patched. [9]

III. SOME COMMON SQL INJECTION TECHNIQUES USED

BY ATTACKERS

A. Tautology

This technique relies on injecting statements that are

always true so that queries always return results upon

evaluation of a WHERE conditional. A common example

would to be inject an “or1=1” into the login parameter.

B. End of Line Comment

After injecting code into a particular field, legitimate code

that follows are nullified through usage of end of line

comments. An example would be to add “--” after inputs

so that remaining queries are not treated as executable

code, but comments.

C. Illegal/Logically Incorrect Query

This technique is usually used by the attacker during the

information gathering stage of the attack. Through

injecting illegal/logically incorrect requests, an attacker

may gain knowledge that aids the attack, such as finding

out the injectable parameters, data types of columns

within the tables, names of tables, etc.

D. UnionQuery

Threat attackers use this technique to guide servers to

return data that were not intended to be returned by the

developers. A common example would be to add the

statement ”UNION SELECT ”,along with an additional

target dataset so that queries return the union of the

intended dataset with the target dataset.

E. Piggy-backed Query

The attackers add additional queries beyond the intended

query, effectively “piggy-backing” the attack on top of a

legitimate request. This technique relies on server

configurations that allow several different queries within

single string of code. For example, the threat agent may

add a query delimiter such as “;”, and then follow up with

a command of his/her own, such as “droptable <name>”,

which effectively deletes the table specified.

F. System Stored Procedure

Database server often ship with system stored procedures

that programmers may use when developing application.

If the threat agent has knowledge of which back-end

server is running, he/she may be able to exploit these

stored procedures to perpetrate their attacks. Stored

procedures may yield results that go beyond the database

itself, but also interact with the OS, for example.

G. Blind Injection

With sufficiently secure systems, attackers may probe for

vulnerable parameters or extract data by using this

technique. Blind injection allows threat agents to infer the

construct of the database through evaluating expressions

that are coupled with statements that always evaluate to

true and statements that always evaluate to false. For

example, the threat agent can add “and1=0–”for one

attempt, while “and1=1–” is used for another attempt,

both added on to the same query. Through examining the

behavior of the server, the threat agent may then deduce

whether the particular parameter is vulnerable or not,

where the two attempts result in the same behavior, the

parameter is secure, while different behavior resulting

from the two statements suggest that the parameter is

vulnerable. [2]

IV. EXISTING COMMON APPROACHES OF

COUNTERMEASURE TO SQL INJECTION ATTACKS AND

PROBLEMS ASSOCIATED WITH THEM.

In the broad sense the most common defense mechanism

approaches against SQL injection attacks include-

A. Customizing the error messages

This counter measure is particularly used against inference

attacks in which no actual data is transferred directly but by

observing the differences in the responses from the application

the attacker can infer the value of data. If the error messages

are customized the attacker may not be able to distinguish

between two logically different responses.

Problem-Customizing or removing the error messages make

debugging a difficult task.

B. Data validation technique

This technique involves accepting only valid input and

rejecting the one known to be harmful e.g. SQL keywords are

not allowed in the login parameters.

Problem-There are various techniques that can be used to

avoid detection by data validation mechanisms such as use of

hexadecimal encoding, in which the SQL keywords are

represented in hexadecimal numbers.

C. Checking input data length

By checking for input variable length, malicious code strings

beyond certain length limits will not be applicable. Even if the

length limitation is long enough to fit a few additional queries,

the inability to input an infinitely long string disables the threat

agent from employing evasion techniques such as encoding.

Problem- With the advent of new hacking techniques the

passwords and usernames are always advised to be sufficiently

long. Putting restriction on the length of the input makes

application vulnerable to hackers.

V. USING ENCRYPTION AS A COUNTERMEASURE

Encrypting the data internally before using it in the dynamic

SQL queries can be used as a handy tool to prevent

Kuldeep Rana et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,628-630

© 2010, IJARCS All Rights Reserved 630

applications from SQL injection attacks. In this technique the

data entered in the login parameters will be first encrypted

using any of the standard encryption techniques and then the

encrypted values will be used in the SQL queries. For

example-

If the attacker uses any SQL injection attack technique like

tautology and enters xyz' or 'x'='x in the password field. The

query formed will be-

SELECT password FROM login_table WHERE password =

'xyz' or 'x'='x';

Because the application is not really thinking about the query,

merely constructing a string and use of quotes has turned a

single-component WHERE clause into a two component and

the 'x'='x' clause is guaranteed to be true no matter what the

first clause is. But before execution of the dynamic query

(involving input data), if the input data is encrypted into a new

code e.g. poiuytrewqasdf by using any standard encryption

scheme, the new query formed will be-

SELECT password FROM login table WHERE password =

'poiuytrewqasdf';

This means most of the SQL injection attack techniques like

tautology, union query, piggy backed query, and end of line

comment etc will not work. But for this countermeasure to

work properly, the database needs to be maintained in such a

way that it contains only encrypted values. Having encrypted

values in database provides additional security to the system.

Also all the existing databases need to be transformed into

new ones with encrypted values and the new application

should be developed in such a way that before storing user

details in the database, the values are first encrypted.

Whenever these values are used in the application (or shown to

user), they are first decrypted and then displayed. In this way

the application can be made secure against most of the attacks.

But frequent encryption and decryption affects the

performance of the system. So, a trade off needs to be made

between application performance and security.

VI. CONCLUSION

`SQL injection attack vulnerability is security hole that is

found in most of the web applications. By taking advantages

of this vulnerability, the attackers can get insight into the data

present in the database server. There are various counter

measures available against the numerous classes of attacks.

But each counter measure has a problem associated with it

(usually performance degradation). This paper presents the use

of encryption and decryption as a tool for securing the web

application against the SQL injection attacks. This scheme

works against most of the attacks but encrypting and

decrypting each time the user want to access the database

degrades the performance of the application.

VII. REFERENCES

[1] J. V. William G. J. Halfondand A. Orso, “A
classification of SQL injection attacks and
countermeasures,” 2006.

[2] “Classification of SQL Injection Attacks” San-Tsai
Sun, Ting Han Wei, Stephen Liu, Sheung Lau
Electrical and Computer Engineering, University of
British Columbia, 2007.

[3] C.Anley, “Advanced SQL injection in SQL server
application,” Technical report, NGS Software Insight
Security Research (NISR), 2002.[Online]. Available:
http://www.nextgenss.com/papers/advanced SQL
injection.pdf

[4] Cerrudo, “Manipulating Microsoft SQL server using
SQL injection,” Technical report, Application
Security, Inc., 2003. [Online]. Available:
http://www.appsecinc.com/presentations/Manipulatin
g SQL Server Using SQL Injection.pdf

[5] C.Anley, “(more) advanced SQL injection in SQL
Server application,” Technical report, NGS Software
InSight Security Research (NISR), 2002.[Online].
Available: http://www.nextgenss.com/papers/more
advanced SQL injection.pdf

[6] K.Spett, “SQL injection: Are your web applications
vulnerable?” Technical report, SPI Dynamics, Inc.,
2005.[Online]. Available:
http://www.spidynamics.com/papers/SQLInjectionW
hitePaper.pdf

[7] W.G. Halfondand A.Orso, “Amnesia:Analysis and
monitoring for Neutralizing SQL injection attacks,
”in 20th IEEE /ACM International Conference on
Automated Software Engineering., Long Beach,
California, USA, 2005.

[8] “A new taxonomy of web attacks suitable for efficient
encoding” Computers & Security. E. Amoroso,
Fundamentals of Computer Security Technology.
Prentice-Hall PTR, 1994.

[9] Stephen Kost, “An Introduction to SQL Injection
Attacks for Oracle Developers” Integrigy, January
2004.

[10] A. S. Ofer Maor, “SQL injection signatures evasion,”
White Paper, Imperva Inc., 2005. [Online].Available:
http://www.imperva.com/application defense
center/white papers/SQL injection signatures
evasion.html.

