
Volume 7, No. 6(Special Issue), November 2016

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

978-93-85670-72-5 © 2016 (RTCSIT)

201

A Review on Major Issues in Software Component Selection

Nitish Madaan

Student
ITM University, Gurgaon
nitishmadaan@gmail.com

Rekha Kalra
Assistant Professor

Guru Nanak College, Budhlada
rekha_nskalra@yahoo.co.in

 Nikita Madaan

Student
Thapar University, Patiala

nikitamadaan1@gmail.com

Abstract- Component based software development(CBD) , as
defined by name to develop a software by selecting appropriate
components and then assemble all the components in a well-
defined manner of software architecture. The selection of
components becomes more complex day by day to meet the
expected requirements. In this paper a model is represented to
define the current needs of an application. This model confirms
expected requirements for the component selection we also did
survey upon the current CBD technologies, their advantages
and disadvantages and also about the characteristics they
inherit. Research and challenges of Component based software
systems are also discussed.

Keywords : CBD,CBSE, CBSD,OS,PC.

1. INTRODUCTION

Software systems day by day providing more functionality and
due to that system are becoming more complex. Component
Based Software development provides ease to the software
developer to develop the software by selection pre build
software components instead from scratch. It also helps to
reduce the cost of the software development and also the
cost[1]. Due to the saving of time and cost it is possible for the
developer to produce more functionality with the saved time
and cost. CBD is still associated with so many problems which
remain unsolved. Likewise configuration Management was
introduced as a solution with the help of values and methods
from former engineering disciplines.
In modern software systems the problem is faced as it becomes
more large, uneasily controlled and complex. So, as a result
cost of development is high, productivity is low, quality of
software is unmanageable and risk is very high to move to the
new technology. All these are solved today with the help of
component based software development (CBD)[3] . According
to the experiences, due to different requirements and
constraints of system, so many difficulties occurred during the
use of same component technology in different domains.
Components are available as commercial off-the shelf
components (COTS) and it is developed using different
languages and platforms by different developers. In the given

figure 1, the commercial off-the shelf components can be
checked out from a repository of components and then
combined into a target software system.

The software development model in CBSD is much different
from the traditional ones. In this new area of development
there are no existing standards or guidelines, and we are
unable to define a key item "Component". [2]In selection of
software component has mainly these three features:

1. Working of a component is under a well defined architecture
2. Communication between components is done by its
interfaces;
3. A component is having a clear functionality, so that it must
be independent and replaceable part of a system.

2. A HISTORY OF COMPONENT-

BASED DEVELOPMENT:

[8]The component based software development (CBD) is close
connected to reuse. In early sixties, when software crisis was
mentioned first time , at that time the idea of reuse of software
pieces originates. The basic simple idea behind this is that a

Nitish Madaan et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,201-203

978-93-85670-72-5 © 2016 (RTCSIT)

202

developer develops software in a way that other can use this. In
the software system it looks like it uses the simple principle,
but during the time of implementation it is relatively hard. The
method of getting better the reuse has been long and laborious.
[4] We have an example of mathematical libraries, in which it
was the successful reuse in the development of different
libraries. so many functions are included in these libraries (e.g.
functions of mathematics like sine , cosine, matrix operations
,etc.), all these are referred to in the source code and then
connect together with the proprietary code. By using this type
of reusable entities gives success in several facts:

1. These types of functions accomplished with well defined
theory.

2. The communication between these functions and the
applications is simple. 3 the inputs and outputs for these
functions are accurately defined.

Let us take the example of Operating System (OS), Operating
Systems are typical reusable “components”. [5]There was a
problem occurred in the past with OS that OSs were costlier
and big , So at that time system had to include so many parts
that are required but never have been used which may lead to
increased the costs. for these reasons companies decided to
develop their own OSs which were adjusted to needs of the
system. Figure 2 shows the example of system evolution:

 In 1980s the systems were developed from the scratch , which
includes the development of the hardware , the basic
development of the software, such as OSs and even
development environment is also need to be developed like
debuggers, compilers etc.

In 1990s, that it was possible to buy hardware due to its
standardization (e.g. PCs). The general purpose OSs has been
used more as they become cheaper.

Nowadays, typically, standard user interface is used as well as
standard infrastructure and standard hardware. Only those parts
of the system are developed internally which are directly
related to end user. Some of the important consequences in this
evolution the development time and development cost is
decreased very extensively.

3. SELECTION ISSUES IN
SOFTWARE COMPONENTS

Software components selection is major task from the subset of
components. In CBD very important role is played by
component selection. End user may get quality software if
developer and researcher keep all the requirement and
challenges in mind at the time of the component selection.

3.1 Components selection factors

[6]There are several component selection factors like fault
tolerance, components compatibility, component size,
Reusability of Component, performance, time etc.

a) Fault Tolerance

Increasing of fault tolerance is basically due to Increase in
Mean Time to Failure (MTTF). Enabling a system to operate
properly in the mean time of failure of some of its components
is to the property of fault tolerance.

b) Components Compatibility

The main challenge in the reusability of component is to check
the compatibility between the several versions of that
component. If a new component is compatible with its previous
version than it is easy to replace with the previous one. It is
mandatory to do the test plans like regression test, functional
compatibility etc.

c) Size of Component

User of the software always wants that the software should be
of less in size. Component size completely depends on the
languages programming languages that can be used for the
development. SO to achieve this it may be notice that only high
level programming languages are used because it needs lesser
size.

d) Reusability of Component

The main challenge to select a component of good quality,
because degree of a component must be checked for its reuse.

Nitish Madaan et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,201-203

978-93-85670-72-5 © 2016 (RTCSIT)

203

CBD helps to enhance the reusability from the pre built
software components and it also saves the time and cost of
development.

e) Performance

Performance is the main challenge at the time of selection of
component. Performance is not calculated for a single
component; rather it is calculated for the whole system after
integration. To increase the performance of the system select
only those components of software which contains high
cohesion modules and less coupling of module, and also less
number of interfaces of components.

f) Time

Development time and testing time saves when we use COTS
components and it also improves the quality of our software.

3.2 Common Steps of Component Selection
Methods

[7]Although there is no commonly accepted method for
component selection, all methods share some key steps that can
be iterative and overlapping. These steps are described as
follows:

Figure 3 The general COTS selection process

Step1: Define the evaluation criteria
Step2: Search for components.
Step3: Filter the search results based on a set of requirements.
This result defines a short list of most promising component.
Step4: Evaluate components
Step5: Analyze and select the best component

4. CONCLUSION AND FUTURE
SCOPE

In this paper, we review about the issues of software
component selection based on several dimensions like cost,
quality, performance etc. During software development the
developer analyze all challenges to select the best optimal
components from the reusable component repository. In future
work we analyze that development of component based
software engineering needs more quality metrics for the
software components that are easy to compute and more
practical to use. Thus, it would be suggested to apply
trapezoidal, bell-shaped, triangular or other possible distributed
patterns for representing imprecise numbers in solving COTS
selection model using the fuzzy logic approach.

REFERENCES
[1] Gill, N. S. and Tomar, P. (2007). “Software Component

Technology: An Easy Way to Enhance Software
Reusability”, proceedings of 94th Indian Science Congress
Conference, Annamalai University, Tamilnadu, INDIA,
pp. 18-19.

[2] G. Ruhe, "Intelligent Support for Selection of COTS
Products,", LNCS, Springer, vol. 2593 2003. pp. 34-45

[3] Mohamed, Abdallah Sami Abbas Shehata. Decision
support for selecting COTS software products based on
comprehensive mismatch handling. Diss. University of
Calgary, 2007.

[4] Pande, Jeetendra, Christopher J. Garcia, and Durgesh Pant.
"Optimal component selection for component based
software development using pliability metric." ACM
SIGSOFT Software Engineering Notes 38.1 (2013): 1-6.

[5] Kaur, A. and Mann, K.S. 2010. Component selection for
component based software engineering. International
Journal of Computer Applications, 2, 1(2010),109–114.

[6] Wes J. Lloyd “A Common Criteria Based Approach for
COTS Component Selection”, in Journal of Object
Technology, April 2005.

[7] Syed Ahsan Fahmi, Ho-Jin Choi “A Study on Software
Component Selection Methods” Feb. 15-18, 2009 ICACT
2009.

[8] Arvinder Kaur, Kulvinder Singh Mann, “Component
Selection for Component based Software Engineering,
International Journal of Computer Appl ications”(0975 –
8887) Volume 2 – No.1, May 2010.

