
Volume 7, No. 6(Special Issue), November 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

978-93-85670-72-5 © 2016 (RTCSIT) 28

CONFERENCE PAPER
International Conference on

Recent Trends in Computer Science & Information Technology (RTCSIT-2016)
21st August 2016

Guru Nanak College Budhlada, Punjab India

Adaptive Segmented Block based Clone Detection and Refactoring using Divide and
Conquer Method

Charnpreet Singh Dr. Dhavleesh Rattan
Research Scholar, Department of Computer Engineering, Assistant Professor, Department of Computer Engineering,

Punjabi University, Punjabi University,
 Patiala, India. Patiala, India.

charnpreet.singh08@gmail.com dhavleesh@gmail.com

ABSTRACT--The clone detection and refactoring
methods are commonly utilized for the defragmentation of the
source code of the software systems. The code cleaning is the
process associated with writing the clean source code with
minimum redundancy to achieve the higher performance. The
code clone detection finds the regions with redundancy and
the refactoring methods are utilized for the removal of the
redundancy from the source code files. In this paper, the
major focus has been kept at the clone detection with high
accuracy by using the divide and conquer method, which is
associated with the segmentation of the code blocks, which is
followed by the template matching technique for the feature
description from the given source code. The divide and
conquer method will be capable to divide the code in the
smaller blocks which would undergo the feature extraction
for the dilution of the user declarations, which adds the
uniqueness to the code segments. The user declarations are
converted to the transparent entities by using the standard
definition for the entities. The code cloning methods are
usually categorized as the blind match detection algorithms,
because they extract the training and testing data from the
submitted source and do not hold any pre-determined source
data. The proposed model will match each and every segment
of code against every other segment. The exact matches
would be extracted, notified and finally arranged in the cod
clone database. The proposed model will track the code
clones and perform the refactoring over the detected code
clones. The refactoring method will utilize the segment level
clone removal from the given source code. The segments
extracted and marked under the code cloning methods would
be evaluated, and the clones in the higher order classes will
be preferred over the child classes. The proposed model is
expected to solve the problems associated with the existing
models in removal of the clones using the refactoring
methods.

Keywords: Adaptive clone detection, refactoring, blind clone
detection, code cleaning.

I. INTRODUCTION
Clone: A code fragment that has exact or similar code
fragment(s) to within the source code, in general, terms as
code clone. Copying code fragments and these are reuse by
pasting with or without modifications are very common

activities in software development. This type of re-use
approach of existing code is named the code cloning and the
pasted code fragment is named a clone of the original [9].
The process is called the software cloning. We also called
the clones are those segments which are used according to
some definition of similarity. However, in software
engineering field, the term code clones is still checking out
an appropriate definitions. Additionally, there are also
several different software engineering tasks like
understanding plagiarism, code quality software evolution
analysis, aspect mining etcetera. Code clones are considered
as bad smells of the software system [9]. Moreover, clones
are additionally the results of copy paste activities. Clones
are believed to possess a negative impact on evolution. More
discussion on the reason for cloning can be found elsewhere
[11].

Types of Clones:

There are 4 types of the clones. First three are called the
"Textual Similarity" and therefore fourth one is understood
as "Functional Similarity" [11].

Textual Similarity:

Type I: (Exact clone) here are the clones in that
variations in white spaces and comments. Type II:
(Renamed) program fragments which are structurally similar
expects for changes in identifiers, literals, types and
comments.

Type III: (Near miss) these are clones that have copied
with further modifications like changes in variables ,
identifiers etcetera.

Functional Similarity:

Type IV: (Semantic clones) programs fragments are
functionally similar while not being textually similar.

Clone Detection Techniques:

Various clone detection techniques are conferred within
in the literature [9, 10].

Text Based Technique: There’s many clone detection
techniques that are based mostly on pure text-based
strategies. In this, fragments are compared with one different
to search out sequence of duplicate text. Text based
technique match the text, line by line, with or without

Charnpreet Singh et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,28-30

978-93-85670-72-5 © 2016 (RTCSIT) 29

CONFERENCE PAPER
International Conference on

Recent Trends in Computer Science & Information Technology (RTCSIT-2016)
21st August 2016

Guru Nanak College Budhlada, Punjab India

normalization the text by remaining the identifiers, clarify the
comments and variations within the layout.

Token Based: In this approach, the all source system is
transformed or parsed in to the sequence of tokens. After
that, the tokens are scanned for finding the duplicate code
and these duplicated sequence returned as clones.

Tree Based: During this approach, the program is split
into parsed tree with a parser of the importance of the
language. Further, the sub trees are explored with a few tree
matching techniques and then the comparable code of the
same tree are reported just as clone pairs.

PDG Based: Program Dependency Graph (PDG) is one
step further in accruing a source code representation of high
abstraction than alternative approaches by considering the
semantic information of the source. PDG contains the control
flow and data flow information of the program and therefore
the code corresponding to the sub graph are identified and
represent as derived (copied) code (clones).

Metrics Comparison Based Technique: To detect the
function clone, Metrics based mostly technique is employed.
There are numerous clone detection techniques that use
totally different metrics for realize the similar code. A
fingerprinting (a set of software's) functions are work out for
syntactic units (a class, a function or a method) and then the
value are compared to search out the copied code over
original code.

Tracking Clipboard Operations: This capability is
relies on the copy-paste activity of programmers for the new
creation of the clones. The fundamental result of this
clipboard operation is the simply clipboard activities in the
editor (internally in the IDE such as Eclipse). When the code
segment pasted after copy this copied segments are recorded
as clone pairs.

Clone Detection Tools:

 CloneDr [2]

 CloneTracker [1]

 Jcd [6]

 CCFinder [3]

 Iclone [5]

II. CLONE MANAGEMENT
Basically, the clone management is the set of activities.

There are many activities in clone management like clone
refactoring,, tracking, visualization, classification and
evolution. Another, Clone management is the umbrella
activeness that is sheltering all the aspects about the clone. In
current status, some benefits of clone management [14]:

o It improves software quality and customer
fulfillment.

o Clone awareness with visualization and during the
debugging and modification. It helps to the developers.

o Modified clone regions are notified to the
developers.

o Cloning patterns are identified, by this quality of
software is improved.

To manage clone, first of all they have to be identified.
The overview of the clone management system is
summarized in the Fig.1. The end part of clone detection
created the clone documentation that saves the location of
code segment and their relationship.

If the copied code changes due to development, the
changes and locations of clone to be tracked and the
documentation need to be uploaded. Next visualization
techniques can be aid to find the potential clones for erase.
Further, clones are documented/or annotated. Upon the
application of refactoring operations a follow up verification
may examine if the refactoring caused any change in
program and may be initiate refactoring. Again
documentation updated after the refactoring.

Ideal clone management activities:

Fig.1: The overview of the clone removal methods [14]

III. REFACTORING
Refactoring is the confirmed technique for structuring on

existing bodies of code renovating its internal structure while
not ever-changing its external behaviour. It’s the way to wash
up the codes that minimize the probabilities of announcing
bugs. In last line during you refactor, you are improving the
look of the code just as it is been written [4].

With refactoring you can take a rough style, chaos even
and reshape it into well designed code. Every step in
refactoring is extraordinary simple; you progress a field from
one class to different. Pull some code out of a methodology
to compose into its own method and push some code up and
down a hierarchy. With the assistance of refactoring you
discover the balance of work changes. Additionally you find
that design, instead of occurring all up front, occurs
continuously during development. You learn from building
the system a way to improve the design.

IV. LITERATURE SURVEY
N. Tsantalis et. al. [13] has worked on assessing the

refactorability of software clones. The existence of code

Charnpreet Singh et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,28-30

978-93-85670-72-5 © 2016 (RTCSIT) 30

CONFERENCE PAPER
International Conference on

Recent Trends in Computer Science & Information Technology (RTCSIT-2016)
21st August 2016

Guru Nanak College Budhlada, Punjab India

clone in software structures is important and many other
survey have displayed that clones will be probably risky with
relevancy to the maintainability and evolution of the source
code. Even with the impotence of the matter, there’s stable
finite support for removing software system clones through
refactoring, as a result of the combination and merging of
ditto code may be very challenging problem, particularly
once software system clones responded to many
modifications when their first opening. During this task, we
tend to propose an approach for automatically assessing
whether a pair of clones can be safely refactored without
changing the behavior of the program. Specially, our
approach examines if the variations present between the
clones can be safely parameterized while not inflicting any
side-effects.

C. K. Roy et. al. [10] has worked on studying the vision
of software clone management: past, present, and future
(Keynote Paper). This paper granted overall survey on the
character of the art in clone management, with in-depth
examination of clone management activities (e.g., tracing,
refactoring, cost benefit analysis) beyond the detection and
analysis. This can be the primary survey on clone
management, wherever we tend to purpose of the
achievements to this point, and reveal avenues for more
research necessary towards an integrated clone management
system. The authors have believed that we have got done a
decent job in surveying the area of clone management and
that this work may serve as a roadmap for future research in
the area.

D. Rattan et al. [11] has surveyed on software clone
detection: a systematic review of software clones and clone
detection and identify the need to develop model and
semantic clone detection technique. Limitation of this study
is multitude of meaning of the keyword ‘clone’. Strings were
manually searched to increase number of searches and
manual searches may miss relevant articles.

M. Tufano et. al. [12] has surveyed that when and why
your code starts to smell bad. There are many factors that
contribute to technical debt. One in all these is described by
code bad smells, i.e., symptoms of poor design and
implementation selections. Whereas the repercussions of
smells on code quality are through empirically observation
assessed, there is still solely anecdotal evidence on when and
why bad smells are introduced. To fill this gap, the authors
have conducted an oversized empirical study over the
amendment history of 200 open source projects from
completely different software packages ecosystems and
investigated when bad smells are introduced by developers,
and therefore the circumstances and reasons behind their
introduction. Their study needed the development of a
strategy to identify smell introducing commits, the mining of
over 0.5M commits, and therefore the manual analysis of
9,164 of them (i.e., those known as smell introducing).

M. Kim et. al. [8] has worked on an empirical study of
refactoring challenges and benefits at Microsoft. This paper
presents a field study of refactoring advantages and
challenges at Microsoft through three complementary study
methods: a survey, semi-structured interviews with
professional software engineers, and quantitative analysis of
version history data. Our survey finds that the refactoring
definition in practice is not confined to a rigorous definition
of semantics-preserving code transformations which

developers understand that refactoring involves substantial
price and risks. The authors have conjointly report on
interviews with a chosen refactoring team that has led a
multiyear, centralized effort on refactoring Windows. The
quantitative analysis of Windows 7 version history finds the
highest 5 percent of preferentially refactored modules
expertise higher reduction within the variety of inter-module
dependencies and several others complexity measures but
increase size more than the bottom 95 percent.

R. Koschke et. al. [7] has developed the software clone
management towards industrial application. This report
documents the program and the ending of Dagstuhl Seminar
12071 “Software Clone Management towards Industrial
Application”. code clones are identical or similar items of
code or design. Lots of analysis has been dedicated to
software clones. In contrast to previous research, this seminar
place a specific stress on industrial application of software
clone management methods and tools and aimed toward
gathering concrete usage situations of clone management in
industry, which is able to facilitate to new industrially
relevant aspects so as to form the longer term research.

M. F. Zibran et. al. [14] has outlined the road to software
clone management: a survey. With regards to the scheduling
techniques, the evolutionary algorithms like GA similarly
because the artificial intelligence (AI) techniques like
heuristic based mostly approaches could suffer from local
optima, and do not guarantee optimality. M, O’Keele et. al.
conducted associate degree empirical comparison of
simulated annealing (SA), GA and multiple ascent hill-
climbing techniques in scheduling refactoring activities in
five software systems written in Java. They rumored that
among those AI techniques, the hill-climbing approach
performed the most effective. CP is a comparatively recent
technique that mixes the strengths of both AI and OR
techniques and so are often expected to perform better. Still,
an empirical comparison of CP with AI and evolutionary
algorithms in optimizing the scheduling of code clone
refactoring can be an interesting study.

V. FINDINGS OF THE
LITERATURE REVIEW

The existing model is created to detect the code clone
fragments with body of the same method or other methods
and duplicate method declarations somewhere in the code
files. The existing method recognizes the variability in
member variables but not in the procedure body variables. In
usual terms the clone detection can be classified in two major
types:

i. Exact Classification

ii. Probabilistic Classification

The exact classification techniques are always bounded to
find the exactly similar clones in the given source code,
whereas the probabilistic classification techniques are
intended to extract the exact as well as probable neighbours
with matching data more than the given threshold. The exact
clone detection finds the exact copy of the code in the two
different places. The probabilistic approach can be classified
as more stronger and flexible approach. In this study have
evaluated the following:

Charnpreet Singh et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,28-30

978-93-85670-72-5 © 2016 (RTCSIT) 31

CONFERENCE PAPER
International Conference on

Recent Trends in Computer Science & Information Technology (RTCSIT-2016)
21st August 2016

Guru Nanak College Budhlada, Punjab India

a. The existing model relies upon the exact clone
detection when it comes to the procedure clone detection and
does not evaluate the changed variable or other entity
declarations.

b. Two methods, which are having the exactly same
flow but declared with different variable entities, are also
considered clones.

c. The certain improvement must be made in order to
evaluate such clones also.

The clone detection is made between the various clones
of same number of lines of code. The small or sub-clones in
the longer programs or functions than the evaluated code
chunk are usually neglected and returned with no matching
results. If some programmer adds a new lines of code with
optional parameters in the end of the function which matches
with a shorter function can with stand in the code by using
the existing scheme. Hence it can be called that the existing
method is enough capable of detecting the clones in non-
optimal and optimal paradigms, but it does not evaluate the
third case where the extra-optimal case has been employed.
In case a third condition is called in the code clone which is
making its structured unique than the existing method
declaration, can be also combined by adding the third
condition in the bottom to sum up the code in single segment.

The code mapping is one the most difficult task for the
clone detection. A clone should not be found within the same
file on the same position; otherwise it can interrupt and
scramble the whole code. The accurate code mapping is very
important and significant for the code clone detection. The
mapping of the source code is performed by using the flow
graphs or directed graphs which connect the code segments
in the tree structure format. The existing method has been
found inefficient in the following paragraph along with the
proposed solutions:

a) The existing refactoring method relies upon the
control flow graphs of individual code fragments.

b) A full mapping tree can be employed over the whole
code to refactor the code with more intelligence.

VI. CONCLUSION
The proposed clone detection and refactoring methods are

based upon the divide and conquer methods for the efficient
removal of the code clones. In the proposed model, for the
code clone detection, the code fragmentation method using
the divide and conquer method for all types of clones will be
utilized to detect the code clones within the code file or
group of code files. The refactoring methodology will utilize
the hybridized method using the combination of extract
method amalgamated with inline and move method
techniques for the procedure definitions. The inline temp,
split temp variable along with replace loop and replace
method based techniques would be utilized to realize the
refactoring methods for replacing and marking the code
fragments. The proposed model is expected to solve the
issues related with the inability for code clone detection by
using the new combination of clone detection and
refactoring. The performance of the proposed model will be
measured by using the accuracy measures such as recall,
precision, f1-measure, elapsed time, etc.

REFERENCES
[1] Tool CloneTracker<http://cs.mcgill.ca/~swevo/clonetracker/>

(accessed January 2016).
[2] Tool CloneDr<http://www.semdesigns.com/products/clone/>

(accessed December 2015).
[3] Tool CCFinder<http://www.ccfinder.net/ccfinderxos.html>

(accessed May 2015).
[4] M. Fowler, Refactoring: Improving the Design of Existing Code,

Addison-Wesley, 2000.
[5] Tool Iclone<http://www.softwareclones.org/iclones.php>
[6] Tool Jcd<http://www.swag.uwaterloo.ca/jcd/> (accessed

December 2015).
[7] R. Koschke, I. D. Baxter, M. Conradt, J. R. Cordy, Software

Clone Management Towards Industrial Application, Dagstuhl
Seminar 12071 on 2 (2) (2012) 21-57.

[8] M. Kim, Z. Thomas, N. Nachiappan, An Empirical Study of
Refactoring Challenges and Benefits at Microsoft, Software
Engineering, IEEE Transactions on 40, (7) (2014) 633-649.

[9] C.K. Roy, J.R. Cordy, A Survey on Software Clone Detection
Research, Technical Report 2007-541, Queen’s University at
Kingston Ontario, Canada, 2007, p.115.

[10] C.K Roy, M.F Zibran, R. Koschke, The Vision of Software
Clone Management: Past, Present, and Future (keynote paper), in:
proceeding of the Software Maintenance and Reengineering and
Reverse Engineering, Antwerp, Belgium, (CSMR-WCRE), 2014,
pp. 18-33.

[11] D. Rattan, R. Bhatia, and M. Singh, Software clone detection: A
systematic review, Information and Software Technology 55 (7)
(2013) 1165-1199.

[12] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A.
D. Lucia, D. Poshyvanyk, When and Why Your Code Starts to
Smell Bad, in: Proceedings of the 37th International Conference
on Software Engineering, Florence, Italy, 2015, pp. 403-414.

[13] N. Tsantalis, D. Mazinanian, G. P. Krishnan, Assessing the
Refactorability of Software Clones, Software Engineering, IEEE
Transactions on 41 (11) (2015) 1055-1090.

[14] M. F. Zibran, C. K. Roy, The Road to Software Clone
Management: A survey, Technical Report 2012–03, The
University of Saskatchewan, Canada, Feb., 2012 p. 54.

