
��������	�
����	�
������������

���������������������
������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved 138

ISSN No. 0976-5697

Storage Schemes and Query Optimization Techniques for RDF Data

Chuttur Y Mohammad
Indiana University

Bloominton, Indiana, USA

mchuttur@indiana.edu

Abstract: With the rising interest in the semantic web, and the rapid proliferation of semantic data, there is an increasing need for efficient means

of storing and querying data stored using the RDF data model. In this paper, the motivations for using RDF as a data model in relation to the

semantic web are presented, following which, several popular available storage techniques for RDF data are described. Different proposed

methods for optimizing queries on RDF datasets are also covered to illustrate the most recent state of the art in RDF data storage and query

optimization techniques.

Keywords: semantic web, rdf data model, databases, query optimization.

I. INTRODUCTION

The Resource Description Framework (RDF) is a language
to represent information about resources on the Web [1].
Originally designed as a metadata model, that represented
metadata about web resources such as the title, author,
copyright and licensing information, RDF has evolved into a
more expansive concept with generalization of the concept of
“web resources”. It can be used for identification of resources
on the web rather than just for retrieval purpose [4]. This
equips RDF to represent information that can be processed by
applications and not just be displayed on search. By providing a
common framework, it thus provides for exchange of web
resource descriptions between computer applications without
the loss of meaning. That is why RDF is a key to the
implementation of the ‘semantic web’, which according to the
world wide web consortium (W3C) is the next evolutionary
stage of internet activity enhancement where automated
programs can store, exchange and make use of machine-
readable information located throughout the web, making
information handling activities on the web more efficient and
certain [4].

RDF was first published as a data model with XML syntax
as a W3C Recommendation in 1999 [7] and the newer,
improved version of RDF was later published in 2004.Since
then, there has been a growing interest in exploiting the
benefits proposed by the RDF model. This paper adds to the
growing literature of RDF by setting the roadmap on the
methods used to store RDF data as well as different query
optimizing techniques that have been proposed so far. First a
review of the RDF data model is provided. Then, several use
cases for RDF are described followed by a review of some of
the popular models that have been proposed to store RDF data.
Different techniques for optimizing queries on these storage
models are then discussed, following which, a summary of the
current state of the art in storage model and query optimization
techniques is provided.

II. RDF DATA MODEL IN BRIEF

The RDF data model draws form the concept of Relational
Database Management System (RDBMS). In fact, it makes use
of a conceptual modeling approach similar to the Entity-
Relationship Model as proposed over thirty years ago [5]. RDF
statements consists of the subject-predicate-object (SPO)

format of expressions to describe Web resources (see Figure 1).
These statements are called ‘triples’ in RDF terminology. The
RDF statement has either a Uniform Resource Identifier (URI)
or a blank node as its subject. The predicate is a URI implying
a relationship between the subject and an object, while the
object itself can be a URI, blank node or Unicode string lateral
[5]. Using this form of expression, i.e, subject-predicate-object
statements, resources on the web can be meaningfully
represented. Consider for example an expression having for
subject the value: http://www.google.com; predicate, the value:
“is-a”, and for object, the value: “search-engine”. It is easy for
both a human and a system to recognize that
http://www.google.com is actually a search engine.

Figure 1. RDF Data Model

RDF data can be serialized in several formats. The most

common serialization format is by using XML syntax to write
and exchange RDF graphs, referred to as RDF/XML
implementations, but other serialization formats also exist and
these include the Notation 3 or N3 format, which is a non-XML
implementation claimed to be easier to follow as it is based on
tabular notation making the triples easier to recognize [3]. N3 is
also similar to Turtle and N-Triples formats.

RDF also supports several query languages and these
include the SPARQL Protocol and RDF Query Language
(SPARQL), as well as other query languages like RDQL,
Versa, RQL and XUL [6]. SPARQL was published as a W3C
recommendation in January 2008, while the other languages
appeared much earlier.

III. SOME RDF USE CASES

Since its introduction as a data model, RDF has been
increasingly used in various applications. Some popular
applications using the RDF model include Really Simple
Syndication (RSS) – a collection of web feed formats used to
periodically publish updated works, Friend of a Friend (FOAF)
- designed to describe people with interests and
interconnections, Haystack client – a semantic web browser
developed by MIT, and MusicBrainz, which publishes
information about Music albums. Since RDF is very suitable

Chuttur Y Mohammad et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 138-141

© 2010, IJARCS All Rights Reserved 139

for sharing vocabularies, it is also highly in use for life science
data, for which there is a high need for data integration over the
web.
Other application using RDF include Chandler, which is �
personal information management (PIM) �pplic�tion, built as
an open source technology that includes RDF and RDF/XML
specifications. RDF Gateway is another application which
makes uses of RDF and operates as an integrated web server
and database built from the ground up rather than on top of �n
existing web server (such �s Ap�che) or d�t�b�se (such �s SQL
Server or MySQL). Sidere�n Software's Se�m�rk also uses
RDF and it is � versatile �pplic�tion which provides resources
for intelligent site querying and n�vig�tion. Similarly Plugged
In Software's Tucan� Knowledge Store (TKS) uses RDF so as
to en�ble stor�ge and retriev�l of d�t� that can be easily scaled
to l�rger d�t�stores.
Adobe, � m�jor pl�yer in the public�tions and gr�phics
industry, has also incorporated RDF in its application. Its
RDF/XML str�tegy is known �s XMP. XMP focuses on
providing � met�d�t� l�bel that can be embedded directly into
�pplic�tions, files, and d�t�b�ses, including bin�ry d�t�.
In other words, these use cases significantly demonstrate the
range of applications that RDF data can be applied into and the
need for efficient storage models.

IV. POPULAR RDF STORAGE SCHEMES

Since the proposal of the RDF data model, various storage
schemes have been proposed for storing RDF data. They can be
classified into three main categories: File system, RDBMS and
OODBMS. Other methods of storage also exist under these
main categories as shown in Figure 2. Further information on
each storage scheme follows.

Figure 2. Different RDF Storage Schemes.

A. Simple Flat File Systems

Mostly used on the web for storing metadata information,
RDF data is stored as RDF/XML notations in web pages or
HTML files. This type of storage model typically requires an
XML parser that can extract the different elements from the
XML file in order to obtain information regarding RDF triples.

B. RDBMS

Since RDF data consists of triples in the form of a subject, a

predicate and an associated object, many storage schemes

exploit this property of the RDF data model to store RDF data

in RDBMS as described below.

1) Triple Store: This is a simple three column table in

RDBMS with attributes set as subject, property and object

respectively [16]. Due to its scalability, this type of storage is

very efficient for storing large amount of data. Another

interesting feature of storing data as triples is that it just

requires self joins in order to answer queries, since all data is

stored in a single table in the former.

2) Clustered Property Table: Clustered property table is one

type of property table. This technique de-normalizes RDF

tables by physically storing them in a wider, flattened

representation which is more similar to traditional relational

schemas [18]. One way to do this flattening is by finding sets

of properties that tend to be defined together; i.e., clusters of

subjects that tend to have these properties defined. This

flattened property table representation usually requires less

number of joins during access as it eliminates self-joins on the

subject column.

3) Property Class Table: Property class table is another type

of property table. This type of table exploits the type property

of subjects to cluster similar sets of subjects together in the

same table. Unlike the Clustered Property Table method of

storage, in the Property Class Table, a property may exist in

multiple property-class tables. In Jena2 [22], for example,

property-class tables were found to be particularly useful in

storing reified statements. Oracle also adopted a property

table-like data structure which they called “subject-property

matrix” to increase the speed of queries over RDF triples. The

most important advantage of the property table approach over

the triple-store is that they reduce subject-subject self-joins of

the triples table.

4) Vertical Partitioning: Vertical partitioning [18] can be

defined as creating two column tables based on unique

properties, with one column representing subjects and the

second column referring to objects. The following are the

advantages of this approach over the Property Class table

approach:

a) Support for multi-valued attributes: If a subject has more

than one object value for a particular property, then each

distinct value is listed in a successive row in the table for that

particular property.

b) Support for heterogeneous records: Subjects that do not

define a particular property are simply omitted from the table

for that property. This avoids the explicit storage of NULL

data, which is very critical when the data is not well-

structured.

c) Fewer unions and fast joins: Property table approach

reduces the need for union clauses in the queries since whole

data is present in the same table. On the other hand the vertical

partitioning approach requires more joins relative to the

property table approach. But still the properties are joined

using simple, fast (linear) merge join algorithms’ which make

vertical partitioning approach more preferable than the

property table approach.

5) Path Based Storage: Proposed by Matano et al. [15], the

path based relational RDF storage scheme parses RDF data

and generates its own RDF graph. This RDF graph is

decomposed into sub graphs which are then stored into distinct

relational tables. The decomposition into sub graphs is based

on the type of predicate, while the sub graphs are based on

Class Inheritance, Property Inheritance, Type information, and

Domain-range. Any remaining data, then, fall into Generic

graphs. Based on the sub-graphs Matano et al. designed their

relational schema which includes the relations class, property,

resource, triple, path and type. Since this storage scheme

Chuttur Y Mohammad et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 138-141

© 2010, IJARCS All Rights Reserved 140

retains schema information and path expression for each data

source it is highly efficient in processing path based queries.

C. OODBMS

RDF data can also be stored as entire graphs in an object

oriented [23] or semi-structured database. The graph model

consists of nodes and edges to represent RDF statements and it

allows direct interpretation of semantics instead of building

graph from triples as may be required by certain query

language such as RQL. Furthermore, storing RDF data as

graph offers two more advantages over other existing schemes

since:

a) Storage design can be simplified as the graph can be

stored directly without further reorganization, and

b) The RDF graph can be interpreted directly as it is

already in the storage and no external mapping is

required from triples to the graph model.

V. QUERYING RDF DATA

Several langauges exist for querying RDF data. Examples

include RDQL, Versa, RQL and XUL but the most recent

language proposed is SPARQL [6]. A full discussion of each

query language is beyond the scope of this paper, and instead

attention is given on the methods used to optimize queries

based on the SPARQL language. In query optimization, the

aim is to find the optimal plan for query execution. Similar to

query optimization in relational databases, several ways for

optimizing SPARQL queries exist as discussed below.

A. Use of Indices:

Use of indices have been successfully proposed and

implemented in for relational databases. To achieve similar

performance, several indices have been proposed based on the

way RDF data is stored. For instance, Chong et al. [19]

proposed the use of B-tree index when the data is stored in two

tables, one of which stores all the triples, and the other table

stores only the corresponding URIs. In Chong et al.’s

proposal, the B-tree index is built on either the subject or the

predicate. Similarly, Alexaki. et al [20] used B-tree indices

when four tables (class, sub-class, property and subproperty)

are used to store RDF data. In this case, B-tree indices are

built on subject, predicate and object. Neumann et al. [18] on

the other hand used B+ tree index on a single triple table, by

considering all six combinations of triples as well as any

frequently used projections, making the index compressed that

reduces the amount of space utilization. This method works

well when RDF data is stored in Triple table. Furthermore,

Baolin et al. [21] combined three indexes to propose the mixed

index structure consisting of a B+ tree, Path index, and

Context index, which was found to work well for both RDF

graphs as well as RDF tables, and which increased the

performance of long path queries. Octavian et al. [17] further

proposed the GRIN index, which is a balanced tree data

structure optimized for RDF graph storage model. This was

found to increase the performance of graph based queries.

Furthermore, George et al. [13] proposed the Triple-T index,

which consists of B+tree index built on all combinations of

triples. This was found to be very efficient for RDF data stored

in one single triple table.

B. By Selectivity Estimation:

Using selectivity estimation, SPARQL queries are optimized

based on selectivity of basic graph patterns (BGP) [14].

Consider the case where the data is stored in memory. Join

order optimization (i.e. static query optimization) can be

achieved by knowing the selectivity of the underlying triple

patterns. For example, for two triple patterns as follows: “?x”,

“rdf:type”, “uv:person”; “?x”, “uv:hasSSN”, “324-09-7865”,

one should be able to easily state that the second triple pattern

should be executed first because its result set is considerably

small when compared to the first triple pattern. Thus, by

reordering the queries, query performance can be significantly

improved.

C. Conversion of SPARQL Queries to relational algebra:

As proposed by Cyganiac et al. [12], SPARQL queries can

be converted to relational algebra onto which optimizing

techniques can be applied. It is well known, within the

database community, that relational algebra is an intermediate

language for the expression and analysis of the queries that is

widely used in the DBMS. A query represented in relational

algebra helps the query engine to perform better. Similarly,

considering RDF data stored in tables, the SPARQL query can

be represented in relational algebra. Different operators like

selection, projection and rename, inner-join and left outer-join

and union of relational algebra can be mapped to the

operations of SPARQL which can be further mapped to SQL.

By doing this one can extend all the optimization techniques

of SQL to SPARQL. However, some mismatches are bound to

occur during this conversion emphasizing caution when using

this method. In relational algebra, the missing variable is

represented as a Null but in SPARQL it is represented as

UNBOUND variable. Moreover, relational algebra rejects the

tuple combination when there is a NULL value in the join

attribute but in RDF relational algebra the tuple combination is

rejected only when an attribute is bound on both sides with

two different values. And, operators such as OPTIONAL and

FILTER cannot be represented in relational algebra.

VI. SUMMARY OF FINDINGS

The choice for storing RDF data is not confined to one

scheme. As illustrated in Figure 1, there are several options

available and to decide which one is most suitable for a task is

highly dependent on many factors such as cost, expertise of

staff, dataset, etc. Each scheme has distict benefits and

drawbacks and Table I list some of the immediate ones that

were observed. This comparison table is not exhauxtive and

further research is required to evaluate each and every feature

of different available storage schemes.

Table I. Comparison of different RDF Storage Schemes

Storage

Method

Benefits Drawbacks

Triple

Table

Simple to construct Requires large

no. of self-joins

Vertical

Partitioning

Works well when the no. of

properties is small

Does not scale

well

Property

Table

Reduces no. of self-joins Requires fully

structured data

Path-based

Table

Schema data and instance data are

easily distinguished from each other.

Requires large

no. of tables

Chuttur Y Mohammad et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 138-141

© 2010, IJARCS All Rights Reserved 141

Regarding query evaluation, it is seen that triple table storage

works well for all kinds of queries and also supports Triple-T,

B+ tree indexes. Null values are however not supported by this

storage model and the model does not work well for queries

that require more number of joins. On the other hand, in the

vertical partitioning storage scheme, instance queries are best

supported. But similar to triple tables, null values are not

supported by vertical partitioning storage schemes and it also

does not scale well for queries with the * operator. Indexes

built on predicate are however well supported. Property table

on the other hand supports null values, and provides good

support for index structures built upon subjects and predicates.

However, it does not perform well for queries with the ?

operator. Path based storage, however, is appropriate for

schema queries but does not work well with any other query

type, and does not support null values. For path based storage,

indexes built upon path are best supported. Table II shows a

comparison of the query support for each data storage model

discussed above. It should be noted that the table is only

indicative of some aspects of querying and further analysis is

required to obtain a full evaluation of query support for each

data storage method.

Table II. Comparison of Query Support for different RDF Storage Schemes

Storage

Method

Null

Values

Queries

Suported

Queries not

well

Suported

Indices well

Suported

Triple Table No Any Those having

large no. of

joins

B+ Trees, Indices

on combination of

S,P,O

Vertical

Partitioning

No Instance

Queries

Queries with * Index built on P

Property

Table

Yes Any Queries with ? Index built on P

Path-based

Table

No Schema

Queries

Non-schema

related

Index built on

paths

VII. CONCLUSION

This paper has presented the RDF data model and some use

cases, thus, emphasizing on the benefits of storing data in

RDF. Several schemes proposed for storing RDF data has

been covered and it is determined that few studies have

focused on benchmarks to evaluate which scheme performs

better demanding further research in this area. Several

optimization techniques for query evaluation have also been

discussed and summarized.

VIII. ACKNOWLEDGMENT

The author extends his sincere thanks to Prabhu, Poornima,
Asim and Rekha from Indiana University, USA, for their
valuable input during the writing up of an earlier version of this
paper.

IX. REFERENCES

[1] Bizer, C., Cyganiak, R., & Gaub, T. 2007. The RDF Book
Mashup: From Web API’s to a Web of Data. Free
University of Berlin.

[2] Bekett, D. 2002. The Design And Implementation Of The
Redland RDF Application Framework. Computer
Networks, 39(5):577-588.

[3] Berners-Lee, T. 2006. Notation 3. Ideas About Web
Architecture. Retrieved from
http://www.w3.org/DesignIssues/Notation3.html

[4] Guha, R., McCool, R., & Fikes, R. 2004. Contexts for the
Semantic Web. In Proceedings of the 3rd International
Semantic Web Conference, Hiroshima.

[5] Harth, A., & Decker, S. 2005. Optimized Index Structures
for Querying RDF from the Web.

[6] Powers, S. 2003. Practical RDF. O'Reilly. CA:USA.

[7] W3C. 2004. RDF Primer:W3C Recommendation 10
February 200. Retrieved April 15 2009 from
<http://www.w3.org/TR/REC-rdf-syntax/#rdfxml>

[8] Decker S., Melnik S., Fensel, D., Klein M., Broekstra
J., Erdmann, M. 2000. The Semantic Web: the roles of
XML and RDF, Internet Computing, Vol.4, nr. 5, pp. 63-
73, IEEE

[9] W3.org. 2004 . RDF Description: W3C Recommendation,
http://www.w3.org/TR/rdf-schema/ (Accessed April 2,
2009).

[10] W3.org. 2007. Semantic Web, [Online].
http://www.w3.org/2001/sw/ (Accessed April 2, 2009).

[11] Xml.com, 2000, The Semantic Web: A Primer,
http://www.xml.com/pub/a/2000/11/01/semanticweb/
(Accessed April 2, 2009)

[12] R. Cyganiak. 2005.A Relational Algebra for Sparql. HP-
Labs Technical Report, HPL2005-170. Retrieved from
http://www.hpl.hp.com/techreports/2005/HPL-2005-
170.html

[13] George H. L. Fletcher and Peter W. Beck. 2008. A role-
free approach to indexing large RDF data sets in
secondary memory for efficient SPARQL evaluation,
arXiv:0811.1083

[14] Markus Stocker et al. 2008. SPARQL basic graph pattern
optimization using selectivity estimation. In Proceeding of
the 17th international conference on World Wide Web
(WWW '08).

[15] Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi
Yoshikawa, and Shunsuke Uemura. 2005. A path-based
relational RDF database. In Proceedings of the 16th
Australasian database conference - Volume 39 (ADC '05).

[16] Daniel J. Abadi et al., .2007.Scalable semantic web data
management using vertical partitioning, Proceedings of
the 33rd international conference on Very large data
bases, September 23-27, 2007, Vienna, Austria.

[17] Octavian Udrea, Andrea Pugliese, and V. S.
Subrahmanian. 2007.GRIN: A Graph Based RDF Index.
In AAAI, pp. 1465–1470, 2007

[18] Thomas Neumann and Gerhard Weikum. 2008. RDF-3X:
a RISC-style engine for RDF. Proc. VLDB Endow. 1, 1
(August 2008), 647-659.

[19] Chong, E. I. , Das,S., Eadon, G. and Srinivasan, J.2005.
An efficient SQL-based RDF querying scheme. In VLDB,
2005.

[20] Alexaki, V;.et al. 2001.The ICS-FORTH RDFSuite:
Managing Voluminous RDF Description Bases,
Proceedings of the Second International Workshop on the
Semantic Web (SemWeb’2001) May 2001.

[21] Baolin, L. and Bo, H. Hprd: 2007.A high performance rdf
database. In NPC, 2007.

[22] Wilkinson, K., Sayers, C., Kuno, H. and Reynolds, D.
2003. Efficient RDF Storage and Retrieval in Jena2, HP
Laboratories Technical Report HPL-2003-266

[23] Bonstrom, V., Hinze, A. and Schweppe, H. 2003.Storing
RDF as a graph. In Proc. of LA-WEB, 2003

