
Volume 7, No. 1, January-February 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 76

ISSN No. 0976-5697

Introducing Quagga Test Bed Simulator with QoS Feature

Jaya S. Pujar
Department of Computer Science

Krishnamurthy Institute of Technology and Engineering
Hyderabad, India

Akshata B. A

Department of Computer Science Gogte Institute of
Technology,

Belagavi, India

Satish Hakkali
Department of Computer Science

Krishnamurthy Institute of Technology and Engineering
Hyderabad, India

Karuna C.G.

Department of Computer Science and Engineering, K.L.E.
Institute of Technology,

Hubballi, India

Abstract: Quagga is a UNIX based network routing protocol that runs as a daemon. It is a fork of popular Zebra framework.
Quagga is mainly a text based network suite which relies on text commands for configuration. As the suite is relatively new, it is
essential to build a simulation model that can utilize the features of Quagga and provide the administrator with design option that
can help administrator understand how Quagga actually works. There is no existing system to best of our knowledge that provides
a simulation test bed for Quagga. Therefore in this work we develop a Quagga simulation framework. The objective has been to
incorporate two major functions of Quagga: Routing and QoS provisioning. We also provided a framework that helps comparing
the Quagga suite with non QoS provisioning flat routing scheme. The proposed simulator incorporates realistic simulation
environment by inheriting and extending the classes of Quagga through JNS (java network simulator). Hence the results obtained
are at par with real networks. The proposed simulator also provides logging service whereby the result of simulation is available
as trace files. These traces can be aggregated and comparative graphs can be designed. Results show that the performance of
Quagga is multifold better than non-Quagga based flat routing under overloaded condition.

Keywords: JNS (Java Network Simulator), Latency, Protocol, PDR (Packet Delivery Ratio), Throughput.

I. INTRODUCTION

Quagga is an open source routing stack. The major difference
with conventional routing stacks to that of Quagga is it mainly
takes care of packet forwarding and with certain accepted
degree of Quality of Service. Most of the commercial routing
stacks runs on specific routers and need specialized router
hardware. Quagga is a routing software package that provides
TCP/IP based routing services with routing protocols. Quagga
is a routing protocol suite which provides TCP/IP based routing
services with routing protocol support such as
RIPv1,RIPv2,RIPng,OSPFv2,OSPFv3,IS-IS,BGP-4 and BGP-
4+. Quagga also supports special BGP Route Reflector and
Route Server behavior. Quagga supports both IPv4 and IPv6
routing protocols. Quagga has a advanced software architecture
which provides a high quality, multi server routing engine.
Quagga uses an interactive user interface for each routing
protocol and also supports common client commands. Due to
this design we can easily design or add new protocol daemons
to Quagga.
Quagga utilizes UNIX core (Linux to be more specific) to
forward the packet. It is particularly well suited for more
dynamic network where topology changes frequently due to
state of art routing table update services. However adaptation
of any protocol or networking suite needs proof of concept. A
system administrator must know the probable performance
being offered by software before the deployment. Most of the
protocols and protocol suits come with their simulator that
helps the network designer to test the network on a virtual
environment for it’s robustness, resilience to overloading and

congestion. Quagga offers no simulators to test it’s features.
Therefore it is quite difficult to quantitatively analyze it’s
performance for a network with varying nodes and load.
Several past studies have addressed the core issues in Quagga
and tried to provide viable extension to the stack itself.
However no past works have focused towards the simple basic
requirement of extending Quagga’s features through a
simulator.
To overcome this, our work addresses the mentioned problem
and proposes a comprehensive Quagga based simulator where
features of Quagga can be tested before deployment. Problem
statement can be summarized as to design and develop a
Quagga simulator and justify Quagga over normal TCP/IP
stack driven routing through simulation results.
Our objective is to build a Quagga simulator that can extend the
features of Quagga into a virtual environment. By extending
real time routing services over a virtual environment, thorough
performance analysis can be made available for the network
designer. The objective here is to import the functionality over
an existing network simulation model and then extending the
simulation model with visualization service to utilize the
services of the framework. JNS being a well adopted text
simulator that extends NS2 classes is good candidate for base
Quagga simulation model. The objective here was to build a
Graphical Quagga simulator that provides Quagga specific
simulation visualization, the core animation service from
network animation trace needed to be bypassed and had to be
incorporated into proposed design.
Thus the objective can be summarized as to build a visual
simulator based on graphical user interface that can simulate

Jaya S. Pujar et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,76-82

© 2015-19, IJARCS All Rights Reserved 77

Quagga features with utmost efficiency and help network
designer to design and test virtual network running Quagga
services.
The rest of the paper is organized as follows. First in Section 2,
we discuss related work. In Section 3, we describe
Methodology and User defined Algorithm of work carried out.
Expected experimental results are discussed in Section 4. In
Section 5 Performance analysis of Algorithm is done. Finally in
Section 6, we discuss the conclusion and future work.

II. LITERATURE SURVEY

Quagga is routing software suite which implements OSPFv2,
OSPFv3, RIPv1, RIPv2, RIPng, BGP for unix, linux, Free
BSD, Solaris and Net BSD. Quagga is a fork of GNU Zebra
which was developed by Kunihiro Ishiguro. All these software
share the same architecture for managing the various protocol
daemons. Traditional routing software (such as GateD [1]) is
made as one process program that provides all of the routing
protocol functionalities as a whole.
 Quagga consists of core daemon Zebra which acts as a
abstraction layer to the underlying Unix kernel and implements
Zserv API to Unix or TCP stream to Quagga clients. Quagga
has rich development of library to implement different
protocols and a client daemon provides effective configuration
and administration. The internal implementation of quagga is
provided in www.Quagga.net[2].
 Software implementations of routers based on
standard PC hardware have been recently made available in the
"open software" and "free software" world [3]. Here are some
open source routers like Quagga: Modular Router: a software
architecture based on Linux, and developed at the MIT, well
documented, and freely distributed.
Quagga flow is a transparent combination of Quagga routing
protocol suite and openflow enabled hardware where moving
completely from legacy protocol stack to logically centralized
controllers using openflow protocol as the only communication
channel with routers as the forwarding engines.
A propose of design of a bug-tolerant router that significantly
reduces the likelihood of a software error affecting the network.
Internally, bug-tolerant router consists of several virtual routers
running in parallel. Each of these virtual-router instances is
made different from the others, by modifying their execution
environment (e.g., by reordering the routing updates they
receive, by changing their configuration, or by modifying their
layout in memory) or by modifying their internal structure
(e.g., by running router code implemented by different
programmers)[6].
In virtual routers as a service the author speaks about
RouteFlow which is innovated by providing interfaces to multi-
vendor networking hardware which are commercially available
and open source software development. RouteFlow, is an
architecture following the software-defined networking (SDN)
[5] standard based on a programmatic approach topologically
centralize the network control, unify state information, and
decouple forwarding logic and configuration from the hardware
elements.
In the paper “can software router scale?”[7] speaks that instead
of sticking to special purpose hardware routers, switch to
software routers which provides the environment of general
purpose routers.
To provide the better performance to Quagga 9.8 the OSPF
(open shortest path first) code is altered . earlier in Quagga 9.8

in OSPF they were using Dijskstra’s algorithm to find the
shortest path when there is a topology change in router. The
solution for this is provided by replacing the Dijskstra’s
algorithm by binary heap data structure. This optimization
leads to better performance than conventional OSPF routers[8].
In paper DROP: An open source project towards distributed
software router architecture [9]. This paper explores the
developing and giving a new distributed model for IP router
control and management. DROP is partially based on the main
guidelines of the IETF ForCES standard (open-source
realization), and it allows building logical network nodes
through the aggregation of multiple software routers, which can
be used to forward the packets or to control different services
provided by the router.
Software routers are gaining attention in the mind of
technology developers as they can be developed on the
standard PC with less cost [7]. But router based on single PC
are suffering from limited bus and Central Processing Unit
(CPU), bandwidth, high memory access latency, limited
scalability in terms of number of NICs and lack of flexibility
mechanisms. Solution for this is to consider Multi-stage
architectures created by interconnecting several PC’s which
results in i) increase the performance of single software routers,
ii) scale router size, iii) distribute packet-forwarding and
control functionalities, iv) recover from single-component
failures, and v) incrementally upgrade router performance[10].
In the paper “Control and Management Plane in a Multi-stage
Software Router Architecture” describes a control protocol for
multistage architecture based on PC interconnection. The
protocol allows information exchange among internal PC’s
which supports configuration of the interconnected
architecture, packet forwarding routing table distribution.

III. METHODOLOGY

The proposed system is depicted in Figure 1. The procedure of
proposed system is a follows:

Source -> Source : Transmit Environment
alt Router Selection
Source -> Router : Select
else failed
Source -> Source: Wait
end
Source -> Router : Transmit Data
Router -> Router : Aggregate
alt RouteAvailableToDestination
Router -> Destination: BufferedData
else FindRoute
Router -> Destination: Bandwidth Efficient Route (DSDV)
end
Router -> Destination : Transmit Buffered Data Through Rou
alt EnoughBandwidth
Source -> Router : Message
Router -> Destination: Message
else Wait Schedule
Router -> Source: Decrease Packet Rate
Source -> Router : Packet Rate Drop

End
Fig. 1 shows the basic architecture of the network. Firstly
group of nodes, distributed over a geographic area select a
Router pertaining to that area. Once selected, this node acts as
local data gathering and buffering node. It schedules the entire

Jaya S. Pujar et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,76-82

© 2015-19, IJARCS All Rights Reserved 78

domain member’s reception and is responsible for channel
allocation. It buffers the packets and forwards the packets to the
sink node using IP routing. If any node is found to flood the
network with too many packets, then the QoS framework of
detects the node and bypasses the node for the current
transmission cycle.

The overall framework first compiles the Quagga library which
is present as a C++ source. Basically Quagga framework is a
daemon that runs Zebra, a unix based open source routing
source. Using Java’s native class support, the C++ source files
are imported into java simulation using java network simulator
package which in itself is an extension of NS2.

ALGORITHM
Step. 1 Make Network with N nodes over grid Topology
 of WIDTH x HEIGHT
Step. 2 Decide Number of Regions(domains).
Step. 3 Make the node with highest degree of neighborhood
 as Router
Step. 4 Other Nodes Join Router
Step. 5 Transmission
For(node=1:N)
 Transmit data
 If(!node(i) is Router?)
 Transmit to Router
Node(i) ->BW=Node(i)-> BW distance between node(i) , Router
Else // Router
 Gather data from other nodes.
 Bufferize Data.
 Transmit data to Destination
Node(i) ->BW=Node(i)-> BW distance between node(i) , Router
if(Node(i)->BW<Threshold)
 [OFN]=DetectOverfloodingNode();
For each ofn in OFN
 WithdrawLink(ofn)
End
End
End
Step. 6 At the end of simulation, calculate pdr,
 packet par node and bandwidth

This java package provides Quagga framework as four major
components : IP addressing, IP protocol (DSDV and OSPF),
QoS provisioning and packet structure. The simulator inherits
Quagga’s node structure into graphical nodes, thereby
providing the graphics abilities to these nodes alongside the
conventional networking being inherited from Quagga through
JNS.
Nodes forwards packets which are IP packets encapsulating
TCP frames. These packets are routed through the router which
maintains a link to all the domain members as well as the

routers of other domain. Therefore packets are routed using
routing module extension through routers to the sink node. Sink
is assumed to be gateway node that connects entire network
with internet. Therefore the proposed simulation provides a
realistic simulation of local network running Quagga where
objective is to connect every node to the internet through their
routers and the gateway node.

Jaya S. Pujar et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,76-82

© 2015-19, IJARCS All Rights Reserved 79

Figure 1. Basic Architecture of proposed work

IV. EXPECTED RESULTS

The expected output is shown in the following figures. First -
create a dynamic network with N nodes which needs to be
given as input. Fig.2. depicts the same.

Figure 2: Dynamic network with 30 nodes specified by user

After giving N nodes as input create data for the nodes to
transmit at maximum bandwidth capacity of 1000 bps (Fig.2.
Left side). Create button Connectivity shows initially about the
picture of nodes communicating with each other.
 Generate random number of packets from every node
to be sent to sink. We can observe three heavily loaded nodes
in the snap shot because we have mentioned in the heavy load
text box as 3 (Fig.2) which consumes more bandwidth.

Figure 3: Entire network is divided into four domains.

Figure 4: Clicking the transmit present button the packet starts to transmit

from nodes to destination ie.,to internet sink

In Fig.3 Nodes in the domain/clusters are displayed with same
color. Place the routers in a way such that most of the nodes are

Jaya S. Pujar et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,76-82

© 2015-19, IJARCS All Rights Reserved 80

reachable through router. This can be done by clicking Reset
button.
 At this stage we can see network configuration changed such
that:
a) All routers are connected
b) Routers are connected to sink
c) Nodes in a domain is connected to router
d) No two nodes can communicate without router.

Fig 5. shows the performance of the present system with
estimation. After clicking the proposed system button we can
observe LB nodes which are black listed nodes means these
node consumes more bandwidth than other nodes. These nodes
are blocked for a session and the performance is calculated and
displayed are black listed nodes means these node consumes
more bandwidth than other nodes. These nodes are blocked for
a session and the performance is calculated and displayed. We
can compare both present system and proposed systems
performance ratio.

Figure 5: Performance of present system

V. PERFORMANCE ANALYSIS

In this section we are discussing regarding the performance of
the present and proposed systems. We mean by present system,
the Quagga routing protocol stack is just a control plane,
whereas in proposed system control plane, forwarding plane
and quality of services are embedded. We are considering the
attributes like number of Nodes, Packet delivery ratio, Mean
square error, dead packet and average bandwidth. For both
present and proposed systems the resulting values are
compared and graph is plotted. After the analysis for all the
features considered the proposed system is showing better
result. The following subsections present the analysis.
Following performance metrics are observed for each
simulation:
Packet Delivery Ratio(PDR) = Ratio of packets received to
packets sent (in %)
Throughput (TP) = Average transform rate or Bandwidth of
the route
 = (packets received / simulation time) * packet size (in Mbps)
Nodes = number of Mobiles including Router nodes
Simulation Time = total simulation time of network (in
seconds)
App rate = Application rate (number of packets per second)
 Latency = Time spent to deliver each data packet (in seconds)

Bandwidth: Average Bandwidth remaining is calculated by
taking the average of remaining bandwidth of all the nodes in
the network. Node looses bandwidth in transmission and
reception.
Packet Delivery Ratio (PDR) : PDR is calculated as the
summation of number of packets received by all destinations is
devided by summation of number of packets sent by all the
sources.

i.e. PDR=
∑

∑
 sources allby sent packets ofnumber

 nsdestinatio allby received packets ofnumber

Table 1 Data of Present and Proposed MSE

Mean Square Error

No. nodes Present Proposed
10 61.92 15.89
15 17.1 12.83
20 21.38 10.83
25 1.26 3.33
30 3.57 1.59
35 4.21 2.27
40 33.97 1.98
45 0.22 0.62
50 0.5 1.26
100 0.08 0.13

The obtained PDR values from simulation are plotted across
number of nodes (Fig 6 & 7). X and Y-axis represents number
of nodes and PDR ratio respectively. By observing the graphs
PDR is better in the proposed system.

Figure 6: Present PDR

Figure 7: Proposed PDR

0

10

20

30

40

50

60

70

80

10 15 20 25 30 35 40 45 50 100

0

20

40

60

80

100

120

10 15 20 25 30 35 40 45 50 100

Jaya S. Pujar et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,76-82

© 2015-19, IJARCS All Rights Reserved 81

Mean Square Error (MSE)
MSE is a comparison of aggregated sink data with total
network data. Actual data from all nodes is calculated and is
expected that it should reach the sink. But the actual data that
reaches sink is not the expected value. That is being compared
in this section. The table (Table.1) shows comparison of data of
present and proposed system and graph is plotted (fig 8 & 9.) X
and Y-axis represents number of nodes and MSE respectively.
We can conclude that the MSE of proposed system is reduced.

Figure 8: Present MSE

Figure 9: Proposed MSE

Packets Per Node (Pkt/Node) and Average Bandwidth
utilization
In the network each node is sending/receiving the data packets.
Packets per node are calculated based on the number of packets
received at the sink to the number of packets generated by all
the nodes. Present and proposed system and graph is plotted
(Fig 10. and 11) and x and y-axis represents number of nodes
and Pkt/Node respectively. It is clearly seen that in the
proposed system bandwidth utilization is efficient and hence
the packets per node is also high. But in the present system the
router aggregates the data and the router losess the bandwidth
for transmission. The bandwidth utilization is shown in the
graph (Fig 12).

Figure 10: Present

Figure 11: Proposed Pkt/Node

Figure 12: Average Bandwidth of Present & Proposed

VI. CONCLUSION AND FUTURE WORK

Designing a Quagga simulator helps the network administrator
to analyze and debug the problem if persist. The major
difference with conventional routing stacks to that of Quagga is
it mainly takes care of packet forwarding and with certain
accepted degree of Quality of Service. Quagga utilizes Unix
core (Linux to be more specific) to forward the packet and is
particularly well suited for more dynamic network where
topology changes frequently due to state of art routing table
update services. The advantage of Quagga is that it extends the
conventional TCP/IP stack and therefore nodes can be
configured in Quagganet seamlessly.
Most of the protocols and protocol suits come with their
simulator that helps the network designer to test the network on
a virtual environment for it’s robustness, resilience to
overloading and congestion. Quagga offers no simulators to test
it’s features. Therefore it is quite difficult to quantitatively
analyze it’s performance for a network with varying nodes and
load. Its hereby concluded that this system proposes a
comprehensive Quagga based simulator where features of
Quagga can be tested before deployment.

VII. REFERENCES

[1] A Study of the interaction of BGP/OSPF in
Zebra/ZebOS/Quagga Avinash Ramanath.

[2] 10. Quagga Routing Software Suite,
http://www.quagga.net.

[3] Application of Free and Open source software and its
Impact on society, Ambar Kundu et al. / (IJCSIT)
International Journal of Computer Science and
Information Technologies, Vol. 1 (4) , 2010, 226-229.

0

10

20

30

40

50

60

70

10 15 20 25 30 35 40 45 50 100

0
2
4
6
8

10
12
14
16
18

10 15 20 25 30 35 40 45 50 100

0

2

4

6

8

10

12

10 15 20 25 30 35 40 45 50 100

0

1

2

3

4

5

6

10 15 20 25 30 35 40 45 50 100

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

1 2 3 4 5 6 7 8 9 10

Proposed
AVG BW

Present AVG
BW

Jaya S. Pujar et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,76-82

© 2015-19, IJARCS All Rights Reserved 82

[4] QuagFlow: Partnering Quagga with OpenFlow, Marcelo
Ribeiro Nascimento,∗ Christian Esteve Rothenberg,∗†
Marcos Rogerio Salvador∗ and Maurício Ferreira
Magalhães.

[5] Building Bug-Tolerant Routers with Virtualization
Matthew Caesar and Jennifer Rexford Princeton
University.

[6] When Open Source Meets Network Control Planes et al.
/ Christian Esteve Rothenberg(*).

[7] Can Software Routers Scale? et al. Katerina Argyraki.

[8] Routing Reconfiguration in IP Networks by Paolo
Narviez, June 2000.

[9] DROP: An Open-Source Project towards Distributed SW
Router Architectures, et al/ Raffaele Bolla

[10] High Performance Switching and Routing, 2008. HSPR
2008. International Conference on,et al. Bianco, A. 15-
17 May 2008,IEEE

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4717302�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4717302�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bianco,%20A..QT.&newsearch=true�

	Introduction
	Literature Survey
	Methodology
	/
	Expected Results
	Performance Analysis
	Conclusion And Future Work
	References

