
Volume 7, No. 1, January-February 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 33

ISSN No. 0976-5697

Coalesced Redundant Block Synchronization on GPGPU
Suma S

Bharathiar University, Coimbatore,India

Abstract: Speculative parallelization is a mainstream technology used to increase the instruction level parallelism and the thread
level speculation. Since the computations are executed faster on GPU’s, the application programs can be still executed faster in
combination and increase the performance. The execution order is rearranged to increase the performance enhancements through
the load/store pair dependencies determined in a different categories to increase the instruction level parallelism. In this paper it is
proved that how speculation reduces the memory latencies and increase in instruction execution through the proof with merge sort
program using the cuda-memcheck and CUDA-GDB. The profiler GPROF is used for sequential program and the parallel
program uses CUDA which uses the mechanism of synchronization through coalesced redundant blocks on GPU.

Keywords-: synchronization, GPGPU, instruction level parallelism, thread level parallelism, performance, redundant blocks,
coalescing.

I .INTRODUCTION

Instruction level parallelism has increased tremendously the
execution speed and the performance of the computer system.
According to Moore’s law the numbers of transistors are
increasingly over the microprocessor chip. The clock speed of
the system is also increasing. The Graphic Processors have
tremendous scope in increasing the performance, scalability
and increases the granularity of the code also.
Along with the CPU the future microprocessors include both
CPU and GPU for the general purpose applications referred as
GPGPU’s. The fine grained parallelism has good impact on the
GPGPUs. The general purpose graphic processors have been
serving the industry for general applications also.

 All modern high performance processors need to exploit
the instruction level parallelism where the instructions are
executed. The execution time can be reduced by executing
instructions in parallel and avoiding execution while instruction
takes its time for the execution. The tolerance to the memory
latency is violation of program semantics before the instruction
level parallelism if a load action is executed prior to store
instruction that writes to the same memory location is
determined as true dependence with a preceding store. The
load is allowed to execute speculatively before store to
increase the performance such that it may be data dependent,
the true memory dependence is not violated, the speculation
would be successful else it results in the erroneous execution.
The best performing technique is memory dependence
speculation and synchronization. With this technique the loads
are speculated whenever it is needed. When the
misspeculations encountered, the information regarding the
dependences are recorded in the predictive structure.

The ILP techniques are useful in sending load requests for
tolerating the memory latency. The ILP exploitation execution
should not violate the program semantics before the instruction
is executing.
High performance can be achieved by the dependences on the
memory and the speculation with parallelization.[1].

 II Speculative Memory Dependences

The Speculative parallelization consists of speculative and
nonspeculative threads for the execution of computations. The
nonspeculative thread executes normally whereas speculative
threads executes parallel part and if the speculation is correct,
the execution of the rest of the instruction is avoided else the
nonspeculative thread resumes the normal execution of the
program squashing the predicted results. It does not change the
architectural state of the system and the execution condition
resulting in system crash. Hence it is a promising technique to
improve ILP with Thread level speculation.
Sreepathi Pai R. Govindarajan Matthew J. Thazhuthaveetil
have integrated automatic memory manager into the X10
compiler to eliminates redundant memory transfers.[4]

The speculation/synchronization may be used as a
potentially lower complexity for exploiting load/store
parallelism.

The true dependences and false dependences are categorized
into 4 groups.

1. True positive dependences.
2. True negative dependences.
3. False positive dependences.
4. False negative dependences.
1. True positive dependences: means that there exists

truly dependence between the store/load operations
and it can be predictable also.

2. The True negative dependences: are the memory
dependences between load/store operations where a
dependency exists but that cannot be predictable as it
is indirectly dependent on the load/store pairs.

3. The false positive dependences: are memory
dependences between load/store pair where there
exists no dependences between the load/store but the
predictions can be made.

4. The false negative dependences: are the dependences
of load/store pair such that there exists no
dependences and it cannot be speculated also such that
they are static in nature.

Suma S, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016 ,33-36

© 2015-19, IJARCS All Rights Reserved 34

Consider an instruction set for 2 digit BCD no and unpack
the BCD no. to store them in two different memory
locations. The instruction set for the same problem is
LDA 3200H
ANI F0H
RRC
RRC
RRC
RRC
STA 3201H
LDA 3200H
ANI OFH
STA 3201H
HLT
The above instruction set can be speculatively parallelized
and executed as
Instruction set Reordered instruction
With no speculation with true positive
 dependences
 Nonspeculative Speculative
LDA 3200H LDA 3200H ANI 0FH
ANI F0H ANI F0H STA 3201
RRC RRC
RRC RRC
RRC RRC
RRC RRC
STA 3201H STA 3201H
LDA 3200H
ANI OFH
STA 3201H
HLT
11 cycles 7 cycles 2 cycles

(a) (b) (c)

The above instruction set in (a) which consists of
load/store pair with sequential execution takes 11 cycles
without speculation. From (b) it is evident that the
nonspeculative thread initiates speculative threads, passes
state information and data to speculative thread for
executing the other part of the instruction set. The
speculative threads executes the second part of the
instruction set computes the result and before the
nonspeculative thread completes its task, the result is
updated in the specified memory location saving 2 cycles
of fetch and store instruction. Suppose the values
computed by the speculative threads results in
misspeculation, the result is squashed and nonspeculative
thread executes the instruction ANI 0FH only again it
saves 1 cycle of execution. According to this instruction
set, ANI FOH is treated as the true positive dependent
instruction. RRC is treated as true negative dependent
instruction as it alone cannot be predicted.
 II.I Coalesced Block Synchronization
The speculative execution exploits the instruction level
parallelism and thread level speculation. It can also be
implemented using both the hardware and software
techniques. The parallelizable problems which are
embarrassingly parallel can be easily adapted to the
architecture which uses CPU and GPU together to enhance
parallelism. The diagram of GPGPU for enhancing
instruction level parallelism and thread level speculation is
provided [6,7]. A model which illustrates with speculative

memory latency technique’s that the executions of the
computations are carried out through the following steps.

 CPU GPU

The execution model consists of 4 processor cores CPU and
GPU. The Intel Inspiron n5050 consists of quad cores
processors where CPU can compute the execution of task in
both the cores.
We consider CPU as the non speculative and GPU as the
speculative computation of the tasks. once the execution of
program starts, the process of execution of instructions is that
the CPU to transfer data from its memory to the GPU memory
for executing the parallel part of the program and the serial part
of the program gets executed on CPU only. The results from
the GPU are committed back to CPU memory.
Before the execution of the task, the compiler profiles the
instructions such that it separates the instructions which are
categorized as above. The instructions like false negative
dependent, true negative dependent are executed in a different
execution order. This reduces many memory fetch load
instruction cycles and reduces memory latency and
redundancies also. The redundant computations are the
computations that are repeated instructions executed repeatedly
in an instructions set.
The execution order of instructions is arranged in such a
way that the CPU and GPU executes instructions to reduce
memory latencies. If the execution results in a correct
speculated value the results are committed else the results are
squashed and CPU executes the entire set of instructions where
it speculated normally. But invalidations also results in less
number of memory cycles compared to normal execution.
This can be verified running a sorting program a mergesort
with both sequential and parallelized program on both CPU and
GPU which works as a co processor and speculative threads.
The CUDA-DBG debugger tool is used to check for the
memory as well as leakages and dependences. The parallel
version of the merge sort uses the array of elements sorted in
using odd and even merging where odd indexed elements are
grouped together and even indexed elements are grouped
together. Then the sorting takes place on the GPU. The GPU is
using the technique of allocating the parallel threads in the
form of blocks where each block is coalesced as a redundant
block to compute odd merge and even merge respectively. The
sequential version of the program for mergesort is given below

 Passes data from
memory

computes

Validate

Commit the result

Misspeculation

Squash the result & normal
Execution

Suma S, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016 ,33-36

© 2015-19, IJARCS All Rights Reserved 35

as well as the parallel version of the odd-even mergesort with
CUDA is given below. The programs are run with the CUDA-
dbg debugger and the results of memcheck, dependencies are
provided in the results.

The sequential algorithm for merge sort is
Algorithm mergesort (int k[],int l,int h)
 { int m;
 If (l<h)
 {
 m=(l+h)/2;
 mergesort (k,l,m);
 mergesort (k,m+1,h);
 Smerge (k,l,m,h); }
 }

Algorithm Smerge(int k[],int l,int m,int h)
{
 int b,c,d,s[20];
 b=l; c=l; d=m+1;
 while ((b<=m)&&(d<=h))
 { if (s[b] < s[d])
 s[b++]=k[c++];
 else
 s[b++]=k[d++];
 }
 while(b<=m) s[b++]=k[c++];
 while(d<=h) s[b++]=k[d++];
for(b=l;b=k-1;b++) k[b++]=s[b++];
}

The parallel merge algorithms is

Algorithm pmerge()
{

Allocate blocks and threads.
Even indexed and odd indexed elements are grouped

 The blocks are sorted.
 }

The parallel merge sort also uses Fourier coefficients when
considering the geometric computations. Since the odd and
even merge results in 2 periodic functions for odd and even
functions.
If f is even f(x)=a0+∑an cos nπ/p x
Where a0=i/pʃ f(x)dx an=2/pʃf(x)cos nπ/2 x dx
If f is odd f(x)=∑bnsin nπ/p x
Where bn=2/pʃf(x)sin nπ/px dx.

Results:

suma@suma-Inspiron-N5050:~$ gprof merge gmon.outFlat
profile:
Each sample counts as 0.01 seconds.
 no time accumulated
 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
 0.00 0.00 0.00 3 0.00 0.00 merge
 0.00 0.00 0.00 1 0.00 0.00 mergesort
 % the percentage of the total running time of the time
program used by this function.
cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.
 self the number of seconds accounted for by this
seconds function alone. This is the major sort for this listing.
calls the number of times this function was invoked, if this
function is profiled, else blank.
 self the average number of milliseconds spent in this ms/call
function per call, if this function is profiled, else blank.
 total the average number of milliseconds spent in this ms/call
function and its descendents per call, if this function is profiled,
else blank.
name the name of the function. This is the minor sort for this
listing. The index shows the location of
 the function in the gprof listing. If the index is in parenthesis it
shows where it would appear in the gprof listing if it were to be
printed
 Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) no time propagated
index % time self children called name
 0.00 0.00 3/3 mergesort [2]
[1] 0.0 0.00 0.00 3 merge [1]

 6 mergesort [2]
 0.00 0.00 1/1 main [6]
[2] 0.0 0.00 0.00 1+6 mergesort [2]
 0.00 0.00 3/3 merge [1]
 6 mergesort [2] ------------------------

This table describes the call tree of the program, and was sorted
by the total amount of time spent in each function and its
children.
Each entry in this table consists of several lines. The line with
the index number at the left hand margin lists the current
function.
 The lines above it list the functions that called this function, and
the lines below it list the functions this one called. This line lists:
index A unique number given to each element of the table.
Index numbers are sorted numerically. The index number is
printed next to every function name so
it is easier to look up where the function in the table.
 % time This is the percentage of the `total' time that was spent
in this function and its children. Note that due to different
viewpoints, functions excluded by options, etc, these numbers
will NOT add up to 100%. self This is the total amount
of time spent in this function.
 children This is the total amount of time propagated into this
function by its children.
 called This is the number of times the function was called. If
the function called itself recursively, the number
only includes non-recursive calls, and is followed by
a `+' and the number of recursive calls.

Suma S, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016 ,33-36

© 2015-19, IJARCS All Rights Reserved 36

Fig. 1 system performance when the sequential program is

working.

 Fig.2 System Performance for the parallel program.

REFERENCES

[1] “Speculative Execution in high performance computer
Architectures” David Kaeli and pen-chung yew chapman
& hall/CRC Chapter13,14

[2] NVIDIA. CUDA: Compute Unified Device
Architecture. URL http://developer.nvidia.com/cuda.
[3] NVIDIA. NVIDIA CUDA C Programming Guide version
 4.0. 2011.
[4] “Automatic CPU-GPU communication management and
optimization”. T. B. Jablin, P. Prabhu, et al. In PLDI, 2011.
[5] “Fast and Efficient Automatic Memory Management for
GPUs using Compiler-Assisted Runtime Coherence Scheme”
Sreepathi Pai R. Govindarajan Matthew J. Thazhuthaveetil
PACT’12, September 19–23, 2012, Minneapolis, Minnesota,
USA 2012 ACM 978-1-4503-1182-3/12/09.
[6] “ Coalesced Speculative Prefetching and Inter thread Data
Dependences” Suma S ,N.P. Gopalan, IEEE international
Conference on Computer Communication and Informatics
(ICCCI 2014) Sri Shakthi Engineering
college,Coimbatore,India Jan 3-5 2014.
CFP1408R-CDR/ISBN978-1-4799-2352-6/14©2014IEEE.
[7] “Nvidia cuda software and gpu parallel computing
architecture,” D. Kirk in ISMM ’07: Proceedings of the 6th
international symposium on Memory management. New York,
NY, USA: ACM, 2007, pp. 103–104

