
Volume 7, No. 1, January-February 2016 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved                     33 

ISSN No. 0976-5697 

Coalesced Redundant Block Synchronization on GPGPU  
Suma S 

Bharathiar University, Coimbatore,India 
 
 

Abstract: Speculative parallelization is a mainstream technology used to increase the instruction level parallelism and the thread 
level speculation. Since the computations are executed faster on GPU’s, the application programs can be still executed faster in 
combination and increase the performance. The execution order is rearranged to increase the performance enhancements through 
the load/store pair dependencies determined in a different categories to increase the instruction level parallelism. In this paper it is 
proved that how speculation reduces the memory latencies and increase in instruction execution through the proof with merge sort 
program using the cuda-memcheck and CUDA-GDB. The profiler GPROF is used for sequential program and the parallel 
program uses CUDA which uses the mechanism of synchronization through coalesced redundant blocks on GPU.  
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I .INTRODUCTION 
 

Instruction level parallelism has increased tremendously the 
execution speed and the performance of the computer system. 
According   to Moore’s law the numbers of transistors are 
increasingly over the microprocessor chip. The clock speed of 
the system is also increasing. The Graphic Processors have 
tremendous scope in increasing the performance, scalability 
and increases the granularity of the code also.  
Along with the CPU the future microprocessors include both 
CPU and GPU for the general purpose applications referred as 
GPGPU’s. The fine grained parallelism has good impact on the 
GPGPUs. The general purpose graphic processors have been 
serving the industry for general applications also. 

  All modern high performance processors need to exploit 
the instruction level parallelism where the instructions are 
executed. The execution time can be reduced by executing 
instructions in parallel and avoiding execution while instruction 
takes its time for the execution. The tolerance to the memory 
latency is violation of program semantics before the instruction 
level parallelism if a load action is executed prior to store 
instruction that writes to the same memory location is 
determined as true dependence with a preceding store.  The 
load is allowed  to execute  speculatively before store to 
increase the performance such that it may be data dependent, 
the  true memory dependence is not violated, the speculation 
would be successful else it results in the erroneous execution. 
The best performing technique is memory dependence 
speculation and synchronization. With this technique the loads 
are speculated whenever it is needed. When the 
misspeculations encountered, the information regarding the 
dependences are recorded in the predictive structure.  

The ILP techniques are useful in sending load requests for 
tolerating the memory latency. The ILP exploitation execution 
should not violate the program semantics before the instruction 
is executing.  
High performance can be achieved by the dependences on the 
memory and the speculation with parallelization.[1]. 
 
 
 

              
                     II Speculative Memory Dependences 

The Speculative parallelization consists of speculative and 
nonspeculative threads for the execution of computations. The 
nonspeculative thread executes normally whereas speculative 
threads executes parallel part and if the speculation is correct, 
the execution of the rest of the instruction is avoided else the 
nonspeculative thread resumes the normal execution of the 
program squashing the predicted results. It does not change the 
architectural state of the system and the execution condition 
resulting in system crash. Hence it is a promising technique to 
improve ILP with Thread level speculation. 
Sreepathi Pai R. Govindarajan Matthew J. Thazhuthaveetil 
have  integrated automatic memory manager into the X10 
compiler  to  eliminates redundant memory transfers.[4] 

The speculation/synchronization may be used as a 
potentially lower complexity for exploiting load/store 
parallelism. 
 
The true dependences and false dependences are categorized 
into 4 groups. 

1. True positive dependences. 
2. True negative dependences. 
3. False positive dependences. 
4. False negative dependences. 
1. True positive dependences: means that there exists 

truly dependence between the store/load operations 
and it can be predictable also. 

2. The True negative dependences: are the memory 
dependences between load/store operations where a 
dependency exists but that cannot be predictable as it 
is indirectly dependent on the load/store pairs. 

3. The false positive dependences: are memory 
dependences between load/store pair where there 
exists no dependences between the load/store but the 
predictions can be made. 

4. The false negative dependences: are the dependences 
of load/store pair such that there exists no 
dependences and it cannot be speculated also such that 
they are static in nature. 
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Consider an instruction set for 2 digit BCD no and unpack 
the BCD no. to store them in two different memory 
locations. The instruction set for the same problem is   
LDA 3200H 
ANI F0H 
RRC 
RRC 
RRC 
RRC 
STA 3201H 
LDA 3200H 
ANI OFH 
STA 3201H 
HLT 
The above instruction set can be speculatively parallelized   
and executed as  
Instruction set                      Reordered instruction  
With no speculation            with true positive  
                                             dependences                                         
                                    Nonspeculative    Speculative                
LDA 3200H                  LDA 3200H        ANI 0FH 
ANI F0H                       ANI F0H              STA 3201 
RRC                               RRC 
RRC                               RRC 
RRC                               RRC 
RRC                               RRC 
STA 3201H                   STA 3201H 
LDA 3200H 
ANI OFH 
STA 3201H 
HLT 
11 cycles                      7 cycles                   2 cycles 

(a)                                    (b)                         (c) 
 
The above instruction set in (a) which consists of 
load/store pair with sequential execution takes 11 cycles 
without speculation. From (b) it is evident that the 
nonspeculative thread initiates speculative threads, passes 
state information and data to speculative thread for 
executing the other part of the instruction set. The 
speculative threads executes the second part of the 
instruction set computes the result and  before the 
nonspeculative thread completes its task, the result is 
updated in the specified memory location saving 2 cycles 
of fetch and store instruction. Suppose the values 
computed by the speculative threads results in 
misspeculation, the result is squashed and nonspeculative 
thread executes the instruction ANI 0FH only again it 
saves 1 cycle of execution. According to this instruction 
set, ANI FOH is treated as the true positive dependent 
instruction. RRC is treated as true negative dependent 
instruction as it alone cannot be predicted.   
  II.I Coalesced Block Synchronization 
The   speculative execution exploits the instruction level 
parallelism and thread level speculation. It can also be 
implemented using both the hardware and software 
techniques. The parallelizable problems which are 
embarrassingly parallel can be easily adapted to the 
architecture which uses CPU and GPU together to enhance 
parallelism. The diagram of GPGPU for enhancing 
instruction level parallelism and thread level speculation is 
provided [6,7]. A model which illustrates with speculative 

memory latency technique’s that the executions of the 
computations are carried out through the following steps. 

 
              CPU                                      GPU 
                   
 
 
 

 
 
                                                                                
 
                    
 
 
 
 
 
 
 
 
 
 
The execution model consists of 4 processor cores CPU and 
GPU. The Intel Inspiron n5050 consists of quad cores 
processors where CPU can compute the execution of task in 
both the cores. 
We consider CPU as the non speculative and GPU as the 
speculative computation of the tasks. once the execution of 
program starts, the process of execution of instructions is that 
the CPU to transfer  data from its memory to the GPU memory 
for executing the parallel part of the program and the serial part 
of the program gets executed on CPU only. The results from 
the GPU are committed back to CPU memory.  
Before the execution of the task, the compiler profiles the 
instructions such that it separates the instructions which are 
categorized as above. The instructions like false negative 
dependent, true negative dependent are executed in a different 
execution order. This reduces many memory fetch load 
instruction cycles and reduces memory latency and 
redundancies also. The redundant computations are the 
computations that are repeated instructions executed repeatedly 
in an instructions set. 
The execution order of instructions is arranged in such a           
way that the CPU and GPU executes instructions to   reduce 
memory latencies. If the execution results in a correct 
speculated value the results are committed else the results are 
squashed and CPU executes the entire set of instructions where 
it speculated normally. But invalidations also results in less 
number of memory cycles compared to normal execution.   
This can be verified running a sorting program a mergesort 
with both sequential and parallelized program on both CPU and 
GPU which works as a co processor and speculative threads. 
The CUDA-DBG debugger tool is used to check for the 
memory as well as leakages and dependences. The parallel 
version of the merge sort uses the array of elements sorted in 
using odd and even merging where odd indexed elements are 
grouped together and even indexed elements are grouped 
together. Then the sorting takes place on the GPU. The GPU is 
using the technique of allocating the parallel threads in the 
form of blocks where each block is coalesced as a redundant 
block to compute odd merge and even merge respectively. The 
sequential version of the program for mergesort is given below 

 Passes data from 
memory 

computes 

Validate 

Commit the result 

Misspeculation 

Squash the result & normal  
Execution  
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as well as the parallel version of the odd-even mergesort with 
CUDA is given below. The programs are run with the CUDA-
dbg debugger and the results of memcheck, dependencies are 
provided in the results. 
 
 
The sequential algorithm for merge sort is 
Algorithm mergesort (int k[],int l,int h) 
     {     int m; 
           If (l<h) 
      { 
           m=(l+h)/2; 
           mergesort (k,l,m); 
          mergesort (k,m+1,h); 
          Smerge (k,l,m,h);      } 
     } 
 
Algorithm Smerge(int k[],int l,int m,int h) 
{  
     int b,c,d,s[20]; 
        b=l; c=l; d=m+1; 
   while ((b<=m)&&(d<=h)) 
   {    if ( s[b] < s[d]) 
        s[b++]=k[c++]; 
        else 
       s[b++]=k[d++]; 
  } 
   while(b<=m)  s[b++]=k[c++]; 
   while(d<=h) s[b++]=k[d++]; 
for(b=l;b=k-1;b++) k[b++]=s[b++]; 
} 

 
 
The parallel merge algorithms is 
 
Algorithm pmerge() 
{   
 
Allocate blocks and threads. 
Even indexed and odd indexed elements are grouped 

        The blocks are sorted. 
    } 
    
The parallel merge sort also uses Fourier coefficients when 
considering the geometric computations. Since the odd and 
even merge results in 2 periodic functions for odd and even 
functions.  
If f is even f(x)=a0+∑an cos nπ/p  x 
Where a0=i/pʃ f(x)dx an=2/pʃf(x)cos nπ/2 x dx 
If f is odd f(x)=∑bnsin nπ/p x 
Where bn=2/pʃf(x)sin nπ/px dx. 
 
 
 
 
 
 
 
 
 
 
 
 

Results: 

                                                                                         
 
 
 

suma@suma-Inspiron-N5050:~$ gprof merge gmon.outFlat 
profile:  
Each sample counts as 0.01 seconds.  
 no time accumulated 
  %   cumulative   self              self     total             
 time   seconds   seconds    calls  Ts/call  Ts/call  name      
  0.00      0.00     0.00        3     0.00     0.00  merge  
  0.00      0.00     0.00        1     0.00     0.00  mergesort  
 %         the percentage of the total running time of the time       
program used by this function.  
cumulative a running sum of the number of seconds accounted  
seconds   for by this function and those listed above it.  
 self      the number of seconds accounted for by this  
seconds    function alone.  This is the major sort for this   listing.  
calls      the number of times this function was invoked, if  this 
function is profiled, else blank.  
   self      the average number of milliseconds spent in this ms/call    
function per call, if this function is profiled, else blank.  
 total     the average number of milliseconds spent in this ms/call    
function and its descendents per call, if this   function is profiled, 
else blank.  
name       the name of the function.  This is the minor sort  for this 
listing. The index shows the location of  
 the function in the gprof listing. If the index is  in parenthesis it 
shows where it would appear in  the gprof listing if it were to be 
printed 
 Call graph (explanation follows)  
granularity: each sample hit covers 4 byte(s) no time propagated  
index % time    self  children    called     name  
                0.00    0.00       3/3           mergesort [2]  
[1]      0.0    0.00    0.00       3         merge [1]  
-----------------------------------------------  
                                   6             mergesort [2]  
                0.00    0.00       1/1           main [6]  
[2]      0.0    0.00    0.00       1+6       mergesort [2]  
                0.00    0.00       3/3           merge [1]  
                                   6             mergesort [2] ------------------------
-----------------------  
This table describes the call tree of the program, and was sorted 
by  the total amount of time spent in each function and its 
children.  
Each entry in this table consists of several lines.  The line with 
the index number at the left hand margin lists the current 
function.  
 The lines above it list the functions that called this function,  and 
the lines below it list the functions this one called.  This line lists: 
index A unique number given to each element of the table.  
Index numbers are sorted numerically. The index number is 
printed next to every function name so  
it is easier to look up where the function in the table.  
     % time This is the percentage of the `total' time that was spent 
in this function and its children.  Note that due to different 
viewpoints, functions excluded by options, etc, these numbers 
will NOT add up to 100%.    self This is the total amount 
of time spent in this function.  
 children This is the total amount of time propagated into this 
function by its children.  
 called This is the number of times the function was called. If 
the function called itself recursively, the number  
only includes non-recursive calls, and is followed by  
a `+' and the number of recursive calls.   
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Fig. 1 system performance when the sequential program is 

working. 
       

 
         
            Fig.2 System Performance for the parallel program. 
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