
Volume 7, No. 1, January-February 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 26

ISSN No. 0976-5697

Decomposition of Quantum Gates with Primitives Quantum Operations

Paramita Ray
Department of Computer Science

Dinabandhu Andrews institute of technology & management
Kolkata, India

Abstract: In classical computers, a bit is either 0 or 1 at a particular time. A quantum bit can exist not only in a state
corresponding to the logical state 0 or 1 as in a classical bit, but also in states corresponding to a blend or superposition of these
classical states. In other words, a qubit can exist as a zero, a one, or simultaneously as both 0 and 1, with a numerical coefficient
representing the probability for each state. Quantum Computers use Quantum Mechanical properties to provide an exponential
speed up in time and query processing capabilities [11]. In this section, we will try to decompose basic quantum gate and simulate
with using Quantum computing language (QCL). QCL is a high level, architecture independent [4] programming language for
quantum computers, with a syntax derived from classical procedural languages.

Keywords: Basic Quantum Gates, PMD, Quantum computing language, Quantum register, Quantum mechanic

I. INTRODUCTION

The idea of a quantum computer was first proposed by
Nobel laureate Richard Feynman [10], in 1981. This new
types of computer, “built of quantum mechanical elements
which obey quantum mechanical laws”, might one day
perform efficient and accurate simulations of quantum
systems. Quantum computers,[9] exploit the unique, non-
classical properties of the quantum systems and allowing
them to process exponentially large quantities of
information in only polynomial time [11].
A. Qubits
Qubits are represented using Dirac notation in quntum
mechanics. Bra-ket or (|>) notation [1] is use to represent
qubit. So the expression |0> represents quantum zero, and
|1> represents quantum one[9]. We can mathematically
represent the state of a qubit at any given time is as a two-
dimensional state space in C2 with orthonormal basis vectors

|1> and |0>. The superposition of a qubit is represented
as a linear combination of those basis vectors:

Where a0 is the complex scalar amplitude of measuring |0>,
and a1 the amplitude of measuring the value |1>.
Amplitudes may [8] be thought of as “quantum
probabilities" in that they represent the chance that a given
quantum state will be observed when the superposition is
collapsed.
B. Superposition State
Superposition is the first distinguishing trait of a quantum
system. Rather than existing in one distinct state at a time, a
quantum system is actually in all of its possible states at the
same time [7]. With respect to a quantum computer, this
means that a quantum register exists in a superposition of all
its possible configurations of 0's and 1’s [3] at the same

time, unlike a classical system whose register contains only
one value at any given time.
If Consider a 3 bit qubit register, an equally weighted
superposition of all possible states would be denoted by:

II. BACKGROUND

A. Quantum Registers

Quantum registers made up of multiple qubits. When
quantum registers collapsed are bit strings[1] whose length
determines the amount of information they can store. In
superposition [3], each qubit in the register is in a
superposition [10] of |1> and |0>, and a register of n qubits
is in a superposition of all 2n possible bit strings that could
be represented using n bits.
For example a three-qubit register would thus have the
following expansion:

B. Quantum logic gates
Quantum logic gates are the building blocks of quantum
circuits, like classical logic gates [1] are] for conventional
digital circuits. Unlike many classical logic gates, quantum
logic gates are reversible [2].

Paramita Ray et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,26-32

© 2015-19, IJARCS All Rights Reserved 27

1) Hadamard Gate

 Figure 1: Hadamard Gate
Matrix representation of the Hadamard Gate
 (Fig2) is following:

 Figure 2: Matrix representation of the Hadamard Gate

Whenever we apply the H gate parallelly[2] to a register
initially at an arbitrary basis state x, where x is a binary
number with n bits, the output state is a superposition of all
the different 2n basis states[5], where the absolute value of

the amplitude of each basis state is and the sign of the
amplitude of such a basis state |z> in the resulting
superposition[10] is positive if an even number of bits which
were[3] 1 in the original state |x> are still 1 in |z>, and
negative otherwise. In other words, the parallel application
of H gates to all qubits of an n-qubit register initially at state
|x> results in the state.

2) Controlled NOT (CNOT) Gate
The controlled NOT gate (or CNOT) acts on 2 qubits, and
performs the NOT operation on the second qubit only when
the first qubit is |1>, and otherwise leaves it unchanged. It is
represented by the matrix.

Figure 4: Matrix representation of the CNOT Gate

3) Taffoli Gate
 The Toffoli gate, is a 3-bit gate, which is universal for
classical [3] computation. It is also known as the controlled-
controlled-NOT gate. If both control qubits are set, then the
amplitudes of the target qubit are flipped.

III. PHYSICAL MACHINE DESCRIPTIONS (PMD)
Quantum logic circuits are made of using quantum gates that
works on qubits. A multi-qubit gate can be decomposed into
a sequence of one-qubit and two-qubit quantum gates. But a
one-qubit or two-qubit gate can not be directly
implementable in a physical quantum machine. So it can be
further decomposed using the set of supported primitive
quantum operations in the physical machine description
(PMD) [6] of the quantum machine. In quantum mechanics,
the time evolution of a closed quantum system can be
described by a unitary operator determined by its
Hamiltonians. But different quantum systems have different
Hamiltonians and they also have different PMDs.

So one must be able to control the Hamiltonians of the
system for performing a quantum operation. But the
problem is that an operation may be easily performed in one
system but with difficulty in another. Hence, one PMD may
be more suitable for implementing a quantum logic gate
than another.
PMDs of the following six quantum systems

• Quantum dot (QD): Here a qubit is represented by the spin
states of two electrons in a double electro statically defined
quantum dot, which has two potential wells with a tunneling
barrier between them.

• Superconducting (SC): In this system qubits can be
represented by using charged carriers [6]. Two electrons can
bind together to form a Cooper pair at low temperature.
Such a pair can be confined within an electrostatic box and
used to represent quantum information.

• Ion trap (IT): Here quantum system is based on a 2D lattice
of confined ions, and each ion represents a physical qubit
that can be moved within the lattice to accommodate local
interactions [6].

• Neutral atom (NA): In this quantum system, trapped
neutral atoms [6] that can be isolated from the environment
and whose simple quantum-level structure can be exploited.

• Linear photonics (LP): Here, a probabilistic two-photon
gate is teleported into a quantum circuit with high
probability.

Figure 3: CNOT Gate

 Figure 5: Toffoli Gate

Figure 6: Matrix representation of the Toffoli Gate

Paramita Ray et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,26-32

© 2015-19, IJARCS All Rights Reserved 28

• Nonlinear photonics (NP): This quantum system is based
on weak cross-Kerr nonlinearities

IV. OUR WORK

Here we will try to decompose basic gates with some
quantum operations and implements it using Quantum
computing language (QCL).

V. QUANTUM COMPUTING LANGUAGE (QCL)

QCL (an acronym for “quantum computation language”) is
an experimental structured quantum programming language
[10]. A QCL interpreter, written in C++, including a
numerical simulation library (libqc) to emulate the quantum
[4]backend is available from
http://tph.tuwien.ac.at//∼oemer/qcl.html.
According to the hybrid architecture as introduced in below
figure, the numerical simulations are handled by a library
(libqc) to separate the classical program state from the
quantum machine state.

VI. CIRCUITS SYNTHESIS (PMD)

Here we show how each of the gates can be implemented on
each of the six PMDs. In this project mainly we decompose
Hadamard Gate,CZ, CNOT,and Toffoli Gate.

A. H Gate
An H Gate is not directly supported in four of the six PMDs
(except for the photonic systems).So we can construct it
through a sequence of rotations. H gate can be obtained by
cascading some rotations that include Ry[6] in most of the
PMDs. Since Ry is not available in QD. So H can be
obtained from a sequence composed of Rz and Rx:

B. CZ Gate
CZ is the most supported two-qubit gate among the six
PMDs [6], and is hence supported by SC). A CZ gate can be

derived from a CNOT gate (for the NP system) because CZ
and CNOT are dual gates along the z-axis and x-axis [12].

1) NP System

2) IT System

C. CNOT Gate

 CNOT is a fundamental part of quantum computation, only
the two photonic systems directly support it.
As shown in Figure. 7(a), CNOT can be implemented using
H and CZ gates.

operator CZ(qureg a,qureg b)
{
 if a[0]{Phase(pi/2);}else{ Phase(pi/2);}
 RotZ(pi/2,a);
RotZ(pi/2,b);
if a[0]{Phase(-pi/4);}else{ Phase(-pi/4);}
RotZ(-pi/2,b);
RotZ(pi,b);
}
qureg x[1];

qureg y[1];
Not(x);
CZ(x,y);

operator CZ(qureg a,qureg b)
{
 RotY(pi/2,b);
CNot(b,a);
RotY(-pi/2,b);
}

qureg x[1];
qureg y[1];
Not(x);
CZ(x,y);

operator CZ(qureg a,qureg b)
{
 H(b);
CNot(b,a);
H(b);

}
qureg x[1];
qureg y[1];
Not(x);
CZ(x,y);

operator hadamard(qureg a)
{
const n=#a;
int i;
for i=0 to n-1 step 1
{
RotZ(pi/2,a[i]);
RotX(pi/2,a[i]);
RotZ(pi/2,a[i]);

if a[i]{Phase(pi/2);}else{ Phase(pi/2);}
}
}

qureg b[4];
hadamard(b);

Paramita Ray et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,26-32

© 2015-19, IJARCS All Rights Reserved 29

Figure7: CNOT implementation a) from H gate b)SC ,NA c)
QD and d)IT system[6]

QCL Implementation
1) Using H gate

2) SC and NA System

operator CZ(qureg x,qureg y)

{ if x[0]{Phase(pi/2);}else{ Phase(pi/2);}
 RotZ(pi/2,x);
RotZ(pi/2,y);
if x[0]{Phase(-pi/4);}else{ Phase(-pi/4);}

RotZ(-pi/2,y);
RotZ(pi,y);
}

operator CNOT (qureg a,qureg b)

{

RotY(-pi/2,b);

CZ(a,b);

RotY(pi/2,b);
}

operator CZ(qureg x,qureg y)

{ if x[0]{Phase(pi/2);}else{ Phase(pi/2);}
 RotZ(pi/2,x);
RotZ(pi/2,y);
if x[0]{Phase(-pi/4);}else{ Phase(-pi/4);}

RotZ(-pi/2,y);
RotZ(pi,y);
}

operator CNOT (qureg a,qureg b)

{
H(b);
CZ(a,b);
H(b);
}

operator CZ(qureg a,qureg b)
{
 RotY(pi/2,b);
CNot(b,a);
RotY(-pi/2,b);
}

qureg x[1];
qureg y[1];
Not(x);
CZ(x,y);

Paramita Ray et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,26-32

© 2015-19, IJARCS All Rights Reserved 30

3) QD System

D. Taffoli Gate
It is a three-qubit gate. To implement it efficiently, we hierarchically decompose it into PMD-independent two-qubit gates[6] first
and then into primitive quantum operations supported by various PMDs.

1) SC System

Figure8: Toffoli suitable for SC System[6]

operator G(qureg x,qureg y)
{
if x[0]{Phase(pi/4);}else{ Phase(pi/4);}
CNot(y,x);
RotZ(pi/2,y);
CNot(y,x);

}

operator CNOT (qureg a,qureg b)

{
Phase(pi/2,a)
RotZ(pi/2,a);
RotY(-pi/2,b);
RotZ(pi/2,b);
G(a,b);
RotY(pi/2,b);

}

operator CZ(qureg x,qureg y)

{ if x[0]{Phase(pi/2);}else{ Phase(pi/2);}
 RotZ(pi/2,x);
RotZ(pi/2,y);
if x[0]{Phase(-pi/4);}else{ Phase(-pi/4);}

RotZ(-pi/2,y);
RotZ(pi,y);
}

operator CNOT (qureg a,qureg b)

{ RotZ(pi/2,b);
RotX(pi/2,b);

CZ(a,b);

RotX(3*pi/2,b);

RotZ(3*pi/2,b);
}

Paramita Ray et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,26-32

© 2015-19, IJARCS All Rights Reserved 31

Figure 9. :Toffoli suitable for NP and QD System[6]

CNot(c,a);
CNot(b,c);
/* T structure */
RotZ(pi/4,b[0]);
if b[0]{Phase(pi/8);}
else{ Phase(pi/8);}

/* T structure */
RotZ(pi/4,b[0]);
if b[0]{Phase(pi/8);}else{ Phase(pi/8);}
CNot(c,a);
CNot(b[0],a[0]);
/* T+ structure */
if b[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,b[0]);
/* T structure */
RotZ(pi/4,c[0]);
if c[0]{Phase(pi/8);}else{ Phase(pi/8);}

QCL Implementation
qureg a[1];
qureg b[1];
qureg c[1];
/* T+ structure */
if a[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,a[0]);
/* T+ structure */
if b[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,b[0]);
H(c);
CNot(b,c);

/*Ry implementation */
RotY(pi/2,c[0]);
/* CZ structure(special case of cp i.e cp(pi) */
CPhase(pi,a);

/* Ry implementation */
RotY(pi/2,c[0]);

/* CZ structure(special case of cp i.e cp(pi) */
CPhase(pi,a);
/* cs structure(special case of cp i.e cp(pi/2) */
RotZ(pi/4,a[0]);
if a[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,b[0]);
if b[0]{Phase(pi/8);}else{ Phase(pi/8);}

CNot(b[0],a[0]);
if b[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,b[0]);
CNot(b[0],a[0]);

QCL Implementation(SC System)
qureg a[1];
qureg b[1];
qureg c[1];
Not(a[0]);
Not(b[0]);
Not(c[0]);
/*-Ry implementation */
RotY(-pi/2,c[0]);
/* cs structure(special case of cp
 i.e cp(pi/2) */
RotZ(pi/4,b[0]);
if b[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,c[0]);
if c[0]{Phase(pi/8);}else{ Phase(pi/8);}
CNot(c[0],b[0]);
if c[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,c[0]);
CNot(c[0],b[0]);
/* -Ry implementation */
RotY(-pi/2,c[0]);
/* cs+ structure */
CNot(c[0],b[0]);
if c[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,c[0]);
CNot(c[0],b[0]);
RotZ(pi/4,b[0]);
if b[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,c[0]);
if c[0]{Phase(pi/8);}else{ Phase(pi/8);}

Paramita Ray et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,26-32

© 2015-19, IJARCS All Rights Reserved 32

VII. CONCLUSIONS

Here we decomposed basic gates (Hadamard,
CNOT,Toffoli) using the set of supported primitive
quantum operations in the physical machine description
(PMD) [6] of the quantum machine. We use quantum
computing Language for simulation of Gates.

VIII. ACKNOWLEDGEMENTS

I am thankful all of my friends, colleagues of Dinabandhu
andrews institute of technology & management.

IX. REFERENCES

1) S. M. Aamini, Quantum algorithms of decision and

planning problems, Oriental, J. Math., Vol. 1, Number
1,2009, Pages 27-29, Oriental Academic Publishers.

2) Emma Strubell, An Introduction to Quantum
Algorithms,Chawathe Spring 2011, COS498.

3) Christoph D¨urr, Peter Høyer. A quantum algorithm
for finding the minimum. http://arxiv.org/abs/quant-
ph/9 607014, vol 2 18 Jul 1996,Cornell University
Library.

4) Bernhard Omer, Quantum Programming in QCL.
http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf, 20th
January 2000, Institute of Information Systems
Technical University of Vienna.

5) Simona Arustei and Vasile Manta, QCL
IMPLEMENTATION OF THE BERNSTEIN-
VAZIRANI ALGORITHM, January 2008, University
Tehnică.

6) Chia-Chun Lin, Amlan Chakrabarti and Niraj K. Jha,
Fellow, IEEE, Optimized Quantum Gate Library for
Various Physical Machine Descriptions, Volume:21
, Issue: 11 29 January 2013, Very Large Scale
Integration (VLSI) Systems.

7) Dan Kenigsberg, Grover’s Quantum Search Algorithm
and Mixed States,
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2001/MSC/MSC-2001-01.pdf, October 2001,
Israel Institute of Technology, Heshvan 5762 Haifa.

8) M. Z. Rashad, Quantum parity algorithms as oracle
calls, and application in Grover Database search,Vol.3,
No.2, March 2012, Advanced Computing: An
International Journal (ACIJ).

9) Amlan Chakrabarti, Chia-Chun Lin and Niraj K. Jha,
Design of Quantum Circuits for Random Walk
Algorithms, 19-21 Aug. 2012 Computer Society
Annual Symposium on VLSI.

10) Mark Oskin, Quantum Computing - Lecture Notes,
http://www.cs.washington.edu/homes/oskin,
spring quarter/2002 University of Washington.

11) Michael A. Nielsen, Isaac L.Chuang, Quantum
Computation and Quantum Information,vol
1,January2011.Cambridge University Press.

12) Yadollah Farahmand ,,Zabialah Heidarnezhad ,
Fatemeh Heidarnezhad , Kh. Kh. Muminov ,Fatemeh
Heydari and Ghasem Saidi Tabar, The structure of
qubit and quantum gates in quantum computers,
http://www.orientjchem.org/vol30no4/the-structure-of-
qubit-and-quantum-gates-in-quantum-computers/,
Volume 30.

/* T+ structure */
if c[0]{Phase(pi/8);}else{ Phase(pi/8);}
RotZ(pi/4,c[0]);
CNot(b[0],a[0]);
H(c);

