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Abstract: In classical computers, a bit is either 0 or 1 at a particular time.  A quantum bit can exist not only in a state 
corresponding to the logical state 0 or 1 as in a classical bit, but also in states corresponding to a blend or superposition of these 
classical states.  In other words, a qubit can exist as a zero, a one, or simultaneously as both 0 and 1, with a numerical coefficient 
representing the probability for each state.  Quantum Computers use Quantum Mechanical properties to provide an exponential 
speed up in time and query processing capabilities [11]. In this section, we will try to decompose basic quantum gate and simulate 
with using Quantum computing language (QCL). QCL is a high level, architecture independent [4] programming language for 
quantum computers, with a syntax derived from classical procedural languages.  
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I. INTRODUCTION 
 
The idea of a quantum computer was first proposed by 
Nobel laureate Richard Feynman [10], in 1981. This new 
types of computer, “built of quantum mechanical elements 
which obey quantum mechanical laws”, might one day 
perform efficient and accurate simulations of quantum 
systems. Quantum computers,[9] exploit the unique, non-
classical properties of the quantum systems and allowing 
them to process exponentially large quantities of 
information in only polynomial time [11]. 
A. Qubits 
Qubits are represented using Dirac notation in quntum 
mechanics. Bra-ket or (|>) notation [1] is use to represent 
qubit. So the expression |0> represents quantum zero, and 
|1> represents quantum one[9]. We can mathematically 
represent the state of a qubit at any given time is as a two-
dimensional state space in C2 with orthonormal basis vectors 

|1> and |0>. The superposition  of a qubit is represented 
as a linear combination of those basis vectors: 

 
 
Where a0 is the complex scalar amplitude of measuring |0>, 
and a1 the amplitude of measuring the value |1>. 
Amplitudes may [8] be thought of as “quantum 
probabilities" in that they represent the chance that a given 
quantum state will be observed when the superposition is 
collapsed.  
B. Superposition State 
Superposition is the first distinguishing trait of a quantum 
system. Rather than existing in one distinct state at a time, a 
quantum system is actually in all of its possible states at the 
same time [7]. With respect to a quantum computer, this 
means that a quantum register exists in a superposition of all 
its possible configurations of 0's and 1’s [3] at the same 

time, unlike a classical system whose register contains only 
one value at any given time.  
If Consider a 3 bit qubit register, an equally weighted 
superposition of all possible states would be denoted by: 

 
II. BACKGROUND 
 
A. Quantum Registers 
 
Quantum registers made up of multiple qubits. When 
quantum registers collapsed are bit strings[1] whose length 
determines the amount of information they can store. In 
superposition [3], each qubit in the register is in a 
superposition [10] of |1> and |0>, and a register of n qubits 
is in a superposition of all 2n possible bit strings that could 
be represented using n bits. 
For example a three-qubit register would thus have the 
following expansion: 

 
B. Quantum logic gates  
Quantum logic gates are the building blocks of quantum 
circuits, like classical logic gates [1] are] for conventional 
digital circuits. Unlike many classical logic gates, quantum 
logic gates are reversible [2].  
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1) Hadamard Gate 

 
 
               Figure 1:  Hadamard Gate 
Matrix representation of the Hadamard Gate 
 (Fig2) is following: 

 
  Figure 2: Matrix representation of the Hadamard Gate   
 
Whenever we apply the H gate parallelly[2] to a register 
initially at an arbitrary basis state x, where x is a binary 
number with n bits, the output state is a superposition of all 
the different 2n basis states[5], where the absolute value of 

the amplitude of each basis state is   and the sign of the 
amplitude of such a basis state |z> in the resulting 
superposition[10] is positive if an even number of bits which 
were[3] 1 in the original state |x> are still 1 in |z>, and 
negative otherwise. In other words, the parallel application 
of H gates to all qubits of an n-qubit register initially at state 
|x> results in the state. 

 
 
2) Controlled NOT (CNOT) Gate 
The controlled NOT gate (or CNOT) acts on 2 qubits, and 
performs the NOT operation on the second qubit only when 
the first qubit is |1>, and otherwise leaves it unchanged. It is 
represented by the matrix. 
 

 

 
Figure 4: Matrix representation of the CNOT Gate   
 
3) Taffoli Gate 
 The Toffoli gate, is a 3-bit gate, which is universal for 
classical [3] computation. It is also known as the controlled-
controlled-NOT gate. If both control qubits are set, then the 
amplitudes of the target qubit are flipped. 

 

 
 
III. PHYSICAL MACHINE DESCRIPTIONS (PMD) 
Quantum logic circuits are made of using quantum gates that 
works on qubits. A multi-qubit gate can be decomposed into 
a sequence of one-qubit and two-qubit quantum gates. But a 
one-qubit or two-qubit gate can not be directly 
implementable in a physical quantum machine. So it can be 
further decomposed using the set of supported primitive 
quantum operations in the physical machine description 
(PMD) [6] of the quantum machine. In quantum mechanics, 
the time evolution of a closed quantum system can be 
described by a unitary operator determined by its 
Hamiltonians. But different quantum systems have different 
Hamiltonians and they also have different PMDs.  
 
 
 
So one must be able to control the Hamiltonians of the 
system for performing a quantum operation. But the 
problem is that an operation may be easily performed in one 
system but with difficulty in another. Hence, one PMD may 
be more suitable for implementing a quantum logic gate 
than another. 
PMDs of the following six quantum systems 

• Quantum dot (QD): Here a qubit is represented by the spin 
states of two electrons in a double electro statically defined 
quantum dot, which has two potential wells with a tunneling 
barrier between them. 

• Superconducting (SC): In this system qubits can be 
represented by using charged carriers [6]. Two electrons can 
bind together to form a Cooper pair at low temperature. 
Such a pair can be confined within an electrostatic box and 
used to represent quantum information. 

• Ion trap (IT): Here quantum system is based on a 2D lattice 
of confined ions, and each ion represents a physical qubit 
that can be moved within the lattice to accommodate local 
interactions [6]. 

• Neutral atom (NA): In this quantum system, trapped 
neutral atoms [6] that can be isolated from the environment 
and whose simple quantum-level structure can be exploited. 

• Linear photonics (LP): Here, a probabilistic two-photon 
gate is teleported into a quantum circuit with high 
probability. 

 

 

 

 
Figure 3: CNOT Gate 

 

 
       

 

 
    Figure 5: Toffoli Gate 

 

 
Figure 6: Matrix representation of the Toffoli Gate 
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• Nonlinear photonics (NP): This quantum system is based 
on weak cross-Kerr nonlinearities  
 
 
IV. OUR WORK 
 
Here we will try to decompose basic gates with some 
quantum operations and implements it using Quantum 
computing language (QCL). 
 
      
V. QUANTUM COMPUTING LANGUAGE (QCL) 
 
QCL (an acronym for “quantum computation language”) is 
an experimental structured quantum programming language 
[10]. A QCL interpreter, written in C++, including a 
numerical simulation library (libqc) to emulate the quantum 
[4]backend is available from 
http://tph.tuwien.ac.at//∼oemer/qcl.html. 
According to the hybrid architecture as introduced in below 
figure, the numerical simulations are handled by a library 
(libqc) to separate the classical program state from the 
quantum machine state.           
 
VI. CIRCUITS SYNTHESIS (PMD) 
 
Here we show how each of the gates can be implemented on 
each of the six PMDs. In this project mainly we decompose 
Hadamard Gate,CZ, CNOT,and Toffoli Gate.  
 
A. H Gate 
An H Gate is not directly supported in four of the six PMDs 
(except for the photonic systems).So we can construct it 
through a sequence of rotations. H gate can be obtained by 
cascading some rotations that include Ry[6] in most of the 
PMDs. Since Ry is not available in QD. So H can be 
obtained from a sequence composed of Rz and Rx: 
 

                            

 
 
B. CZ Gate  
CZ is the most supported two-qubit gate among the six 
PMDs [6], and is hence supported by SC). A CZ gate can be 

derived from a CNOT gate (for the NP system) because CZ 
and CNOT are dual gates along the z-axis and x-axis [12]. 
 
1)   NP System 
 

 
 

 
 
2)  IT System 

 
 
C. CNOT Gate 
 
 CNOT is a fundamental part of quantum computation, only 
the two photonic systems directly support it.  
As shown in Figure. 7(a), CNOT can be implemented using 
H and CZ gates. 

operator  CZ(qureg a,qureg b) 
{ 
 if a[0]{Phase(pi/2);}else{ Phase(pi/2);}  
 RotZ(pi/2,a); 
RotZ(pi/2,b); 
if a[0]{Phase(-pi/4);}else{ Phase(-pi/4);}  
RotZ(-pi/2,b); 
RotZ(pi,b); 
} 
qureg x[1]; 
 
qureg y[1]; 
Not(x); 
CZ(x,y); 
 
 

operator  CZ(qureg a,qureg b) 
{ 
 RotY(pi/2,b); 
CNot(b,a); 
RotY(-pi/2,b); 
} 
 
qureg x[1]; 
qureg y[1]; 
Not(x); 
CZ(x,y); 
 

operator  CZ(qureg a,qureg b) 
{ 
 H(b); 
CNot(b,a); 
H(b); 
 
} 
qureg x[1]; 
qureg y[1]; 
Not(x); 
CZ(x,y); 
 

operator hadamard(qureg a)  
{  
const n=#a;    
int i;  
for i=0 to n-1 step 1  
{  
RotZ(pi/2,a[i]);  
RotX(pi/2,a[i]);  
RotZ(pi/2,a[i]);  
 
if a[i]{Phase(pi/2);}else{ Phase(pi/2);}  
}  
}  
 
qureg b[4];  
hadamard(b);  
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Figure7: CNOT implementation a) from H gate b)SC ,NA c) 
QD and d)IT system[6] 

 
QCL Implementation 
1) Using H gate 
 

   
 
2) SC and NA System 
 

    
 
 
 
 
 
 
 
 
 
 
 

operator  CZ(qureg x,qureg y) 
 
{ if x[0]{Phase(pi/2);}else{ Phase(pi/2);} 
 RotZ(pi/2,x); 
RotZ(pi/2,y); 
if x[0]{Phase(-pi/4);}else{ Phase(-pi/4);} 
 
RotZ(-pi/2,y); 
RotZ(pi,y); 
} 
 
 
 

operator CNOT (qureg a,qureg b) 
 
{  
 
RotY(-pi/2,b); 
 
CZ(a,b); 
 
RotY(pi/2,b); 
} 

operator  CZ(qureg x,qureg y) 
 
{ if x[0]{Phase(pi/2);}else{ Phase(pi/2);} 
 RotZ(pi/2,x); 
RotZ(pi/2,y); 
if x[0]{Phase(-pi/4);}else{ Phase(-pi/4);} 
 
RotZ(-pi/2,y); 
RotZ(pi,y); 
} 
 
 
 

operator CNOT (qureg a,qureg b) 
 
{  
H(b); 
CZ(a,b);  
H(b); 
} 
 
 

operator  CZ(qureg a,qureg b) 
{ 
 RotY(pi/2,b); 
CNot(b,a); 
RotY(-pi/2,b); 
} 
 
qureg x[1]; 
qureg y[1]; 
Not(x); 
CZ(x,y); 
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3) QD System 

     
 

   
 
D. Taffoli Gate 
It is a three-qubit gate. To implement it efficiently, we hierarchically decompose it into PMD-independent two-qubit gates[6] first 
and then into primitive quantum operations supported by various PMDs. 
 
1) SC System 
 

 
Figure8: Toffoli suitable for SC System[6] 
 
 
 
 
 
 
 
 
 
 
 
 
 

operator G(qureg x,qureg y) 
{ 
if x[0]{Phase(pi/4);}else{ Phase(pi/4);} 
CNot(y,x); 
RotZ(pi/2,y); 
CNot(y,x); 
 
} 
 
 
 

operator CNOT (qureg a,qureg b) 
 
{  
Phase(pi/2,a) 
RotZ(pi/2,a); 
RotY(-pi/2,b); 
RotZ(pi/2,b); 
G(a,b); 
RotY(pi/2,b); 
 
 
} 

operator  CZ(qureg x,qureg y) 
 
{ if x[0]{Phase(pi/2);}else{ Phase(pi/2);} 
 RotZ(pi/2,x); 
RotZ(pi/2,y); 
if x[0]{Phase(-pi/4);}else{ Phase(-pi/4);} 
 
RotZ(-pi/2,y); 
RotZ(pi,y); 
} 
 
 
 

operator CNOT (qureg a,qureg b) 
 
{ RotZ(pi/2,b); 
RotX(pi/2,b); 
 
CZ(a,b); 
 
RotX(3*pi/2,b); 
 
RotZ(3*pi/2,b); 
} 
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Figure 9.  :Toffoli suitable for NP and QD System[6] 
 

 
 

 
 

 
 

CNot(c,a); 
CNot(b,c); 
/* T structure */ 
RotZ(pi/4,b[0]); 
if b[0]{Phase(pi/8);} 
else{ Phase(pi/8);} 
 
 
 
 
 
 
 
 

/* T structure */ 
RotZ(pi/4,b[0]); 
if b[0]{Phase(pi/8);}else{ Phase(pi/8);} 
CNot(c,a); 
CNot(b[0],a[0]); 
/* T+ structure */ 
if b[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,b[0]); 
/* T structure */ 
RotZ(pi/4,c[0]); 
if c[0]{Phase(pi/8);}else{ Phase(pi/8);} 
 
 

QCL Implementation 
qureg a[1]; 
qureg b[1]; 
qureg c[1]; 
/* T+ structure */ 
if a[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,a[0]); 
/* T+ structure */ 
if b[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,b[0]); 
H(c); 
CNot(b,c); 
 

 
 
/*Ry implementation */ 
RotY(pi/2,c[0]); 
/* CZ structure(special case of cp i.e cp(pi) */ 
CPhase(pi,a); 
 

/* Ry implementation */ 
RotY(pi/2,c[0]); 
 
/* CZ structure(special case of cp i.e cp(pi) */ 
CPhase(pi,a); 
/* cs structure(special case of cp i.e cp(pi/2) */ 
RotZ(pi/4,a[0]); 
if a[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,b[0]); 
if b[0]{Phase(pi/8);}else{ Phase(pi/8);} 
 
CNot(b[0],a[0]); 
if b[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,b[0]); 
CNot(b[0],a[0]); 
 

QCL Implementation(SC System) 
qureg a[1]; 
qureg b[1]; 
qureg c[1]; 
Not(a[0]); 
Not(b[0]); 
Not(c[0]); 
/*-Ry implementation */   
RotY(-pi/2,c[0]); 
/* cs structure(special case of cp 
 i.e cp(pi/2) */ 
RotZ(pi/4,b[0]); 
if b[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,c[0]); 
if c[0]{Phase(pi/8);}else{ Phase(pi/8);} 
CNot(c[0],b[0]); 
if c[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,c[0]); 
CNot(c[0],b[0]); 
/* -Ry implementation */ 
RotY(-pi/2,c[0]); 
/* cs+ structure */ 
CNot(c[0],b[0]); 
if c[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,c[0]); 
CNot(c[0],b[0]); 
RotZ(pi/4,b[0]); 
if b[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,c[0]); 
if c[0]{Phase(pi/8);}else{ Phase(pi/8);} 
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VII. CONCLUSIONS 
 
Here we decomposed basic gates (Hadamard, 
CNOT,Toffoli)  using the set of supported primitive 
quantum operations in the physical machine description 
(PMD) [6] of the quantum machine. We use quantum 
computing Language for simulation of Gates.  
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/* T+ structure */ 
if c[0]{Phase(pi/8);}else{ Phase(pi/8);} 
RotZ(pi/4,c[0]); 
CNot(b[0],a[0]); 
H(c); 
 


