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Abstract: A software reliability growth model is one of the fundamental techniques used to assess software reliability quantitatively. The 

software reliability growth model is required to have a good performance in terms of goodness-of-fit, predictability, and so forth. In this paper, 

we will summarize some existing Software Reliability Growth Models (SRGM’s). Our main focus in this paper will be to provide a comparative 

overview of the various SRGM’s in general. The comparison will mainly be on the basis of what type of Testing-Effort Function (TEF) is used 

by which type of probability distribution function, to describe Testing-Effort curve. First, we provide overview of Software Reliability and 

Software Reliability Growth Model. Next, with the intention of comparing various SRGMs we provide the Testing Effort Functions (TEFs) 

given by various researchers. Then actual software data from the software projects have been used to demonstrate the comparison of SRGMs. 

The evaluation results from the various SRGMs are analyzed and compared to show which SRGM has fairly better prediction in estimating  

number of remaining faults, expected number of errors, future failure behavior from present and past failures, optimal release time and which 

SRGM comparatively describes the actual expenditure pattern more faithfully during  software development process. 

Keywords: Software Reliability, Testing-Effort Function (TEF), Non-Homogenous Process(NHPP), Probability Distribution Function (PDF), 

Fault, Failure, Software Reliability Growth Model (SRGM), Testing-Effort curve, Optimal Release Time, Failure-Intensity. 

 

I. INTRODUCTION 

Over the last few decades, there has been fast growth in 

software development process and software management. 

Efforts are being made to produce quality and reliable 

software efficiently   and effectively. As a result software 

reliability has become a great concern for both developers 

and users. Software reliability is one of the important 

parameters of software quality and system dependability. It 

is defined as the probability of failure-free software 

operation for a specified period of time in a specified 

environment [16], [17], [18], [9]. In highly complex modern 

software systems, reliability is the most important factor, 

since it quantifies software failures during the process of 

software development and software quality control. 

Software reliability can also be defined for software as the 

probability of execution without failures for some specified 

interval of natural units or time [18]. A failure is a departure 

of system behavior in execution from user requirements and 

it is the result of a fault. A fault is a defect that causes or can 

potentially cause the failure when executed [18]. The 

models applicable to the assessment of software reliability 

are called SRGMs. SRGM are useful for estimating how 

software reliability improves as faults are detected and 

repaired. It can be used to predict when a particular level of 

reliability is likely to attained and also helps in determining 

when to stop testing to attain a given reliability level. 

SRGMs help in decision making in many software 

development activities such as number of initial faults, 

failure intensity, reliability within a specified interval of 

time period, number of remaining faults, cost analysis and 

release time etc. A software reliability model describes 

failures as random process as failures are result of two 

processes: The introduction of faults and then activation 

through selection of input states, both of these processes are 

random in nature. So SRGM is generally described as the 

probability distribution of the value of the random process 

at each point in time. SRGMs are developed in general by 

probability distribution of failure times or the number of 

failures experienced and by the nature of the random 

process with time. To achieve highly reliable software 

systems, many software fault detection/ removal techniques 

can be used by programmers or testing teams. In applying 

these techniques, the SRGM are important, because they can 

provide quite useful information for developers and testers 

during the testing/debugging phase. Many researchers have 

also tried to compare various SRGMs [25] by using actual 

failure data. 

Numerous SRGMS have been developed during the last 

three decades and they can provide very useful information 

about how to improve reliability [16], [18], [29], [21]. The 

effort index or the execution time is better time domain for 

software reliability modeling than the calendar-time because 
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the shape of observed reliability growth curve depends 

strongly on the time distribution of testing-effort [17], [20]. 

II. TESTING EFFORT BASED SOFTWARE 

RELIABILITY MODELING 

[a] Testing-Effort Function: 

In software testing many testing-efforts are consumed, 

such as the CPU time, the human power and executed test 

cases. So testing-effort can be measured by the human 

power, the number of test cases the number of CPU hours, 

etc [26].Software reliability models should be developed by 

incorporating the Testing-Effort Functions (TEFs) in real 

development environment. When applied extensively to real 

software development projects, these models provide a 

reasonable fit to the observed data and give insightful 

interpretations for the resource consumption process during 

the software development [7][8]. Much testing-effort is 

consumed during software testing phase. The consumed 

testing-effort indicated how the errors are detected 

effectively in the software and can be modified by different 

distributions [31], [18], [17], [28], [30], [32], and [11].  

Many authors have incorporated different Testing-Effort 

Functions in software reliability growth modeling. Some of 

them are below: 

[b] Different Testing- Effort functions:- 

[a] Yamada Exponential Curve [31]: For 1θ =  and 1m = , 

there is an exponential testing-effort function, and the 

cumulative testing-effort consumed in time (0, t) is:

  
( ) .(1 ), 0, 0.tW t e βα α β−= − > >  

[b] Yamada Rayleigh curve [32]: For 1θ =  and 2m=  there is 

a Rayleigh testing-effort function, and the cumulative 

testing-effort consumed in time (0, ]t is:        

        
2

( ) .(1 ), 0 , 0.t
W t e

βα α β−= − > >  

[c] Yamada Weibull curve [24]: For 1θ =  there is a Weibull 

testing-effort function, and the cumulative testing-effort 

consumed in time (0, ]t  is: 

       ( ) .(1 ), 0, 0, 0.
m

tW t e mβα α β−= − > > >  

[d] Generalized Exponential curve [21]: For 2m =  there is 

a generalized exponential testing-effort function, and 

the cumulative testing-effort consumed in time (0, ]t  is: 

       ( ) .(1 ) , 0, 0, 0.tW t e β θα α β θ−= − > > >  

[e] Burr Type Χ  curve [22]: For 2m = , there is Burr type 

Χ  testing-effort function, and the cumulative testing-

effort consumed in time (0, ]t  is: 

      
2

( ) .(1 ) , 0, 0, 0.t
W t e

β θα α β θ−= − > > >         

 [f] New Modified Weibull curve [23]: proposed the NMW 

testing-effort function, and the cumulative testing-effort 

consumed in time (0, ]t  is: 
..( ) .(1 ) , 0, 0, 0, 0.

m t
t e

W t e m
δβα α β δ−= − > > ≥ >  

Where , , , ,m andα β δ θ  are constant parameters, α  is the 

total amount of testing-effort expenditures; β and  δ  are the 

scale parameters, and ,m θ  are shape parameters. 

 

III. SOFTWARE RELIABILITY GROWTH 

MODEL 

 

The mathematical expression of TE-based is: 
( )

/ ( ) ( ) [ ( )], 0, 0 ( ) 1
dm t

w t r t a m t a r t
dt

= ⋅ − > < <                                          (1)                          

                     

( )
( ) ( ) [ ( )], 0, 0 ( ) 1

dm t
w t r t a m t a r t

dt
= ⋅ ⋅ − > < <                                      (2) 

 

The basic SRGM is based on the following assumptions: 

[a] The fault removal process is NHPP. 

[b] The software system is subject to failures at random 

times caused by the manifestation of remaining faults in 

the system. 

[c]  The mean number of faults detected in ( , ]t t t+ ∆ , 

( )d m t

d t
 by the current ( )W t  is proportional to the 

mean number of remaining faults in the system. 

[d]  ( )r t  is function of time (not just a constant). 

[e] The time dependent behavior of TE can be modelled by 

the logistic, Weibull, Rayleigh or Exponential 

distribution. 

[f] Each time a failure occurs, the fault that caused it is 

immediately and perfectly removed, and no new faults 

are introduced. 

[g] Correction of errors takes only negligible time and 

detected error is removed with certainty.  

Non-Homogeneous Poisson Process (NHPP) as a 

stochastic process has been successfully used in the 

reliability study of software system. For stochastic modeling 

of software error detection phenomenon, a counting process 

is defined as ( ), 0N t t≥  , where ( )N t  represents the 

cumulative number of software errors detected by testing 

time t with mean value function ( )m t .SRGM based on 

NHPP under the assumption of Goel and Okumoto (1997 ) 

is formulated as: 
( )[ ( )]

Pr{ ( ) } , 0,1, 2, ...
!

n m tm t e
N t n n

n

−⋅
= = =                                (3) 

In general, an implemented software system is tested to 

detect and correct software errors in the software 

development process. During the testing phase software 

errors remaining in the system cause software failure and 

the errors are detected and corrected by test personnel. 

Based on the above assumptions, if the number of the 

detected errors by the current testing-effort(TE) expenditure 

is proportional to the number of remaining errors, then   the 

following different equation [31], [19], [32], [30], [13], [5], 

[2], [1] is obtained: 
( )

/ ( ) [ ( )], 0 , 0 1
dm t

w t r a m t a r
dt

= ⋅ − > < <                                        (4) 

Where ( )m t represent the expected mean number of 

errors detected in time (0, ]t  which is assumed to be a 

bounded non-decreasing function of t with (0) 0, ( )m w t= is 

the current testing-effort expenditure at time t, a is expected 

number of initial error in the system, and r is the error 

detection rate per unit testing-effort at time t . Solving the 

above differential equation, we get  
( )

( ) .(1 )
r W t

m t a e
⋅

= −                                                                   (5) 

Substituting ( )W t from the various cumulative testing-

effort expenditure consumed in time (0, ]t  given by various 

authors above mentioned, we get 
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1) 
(1 )

( ) (1 ).

m t
t er e

m t a e

δβα
⋅− ⋅ ⋅⋅ ⋅ −

= ⋅ −                          (6a) 

A NHPP model with mean value function incorporating 

the NMW testing-effort expenditure (Quadri et al 2010) 

2) 
(1 )

( ) (1 ).

mtr e
m t a e

β θα − ⋅⋅ ⋅ −
= ⋅ −                            (6b) 

A NHPP model with mean value function incorporating 

the Exponential Weibull (EW) testing-effort expenditure 

(Quadri et al 2007) 

3) 

2
(1 )( ) (1 ).

t
r e

m t a e
β θα − ⋅− ⋅ ⋅ −= ⋅ −                                (6c) 

A NHPP model with mean value function incorporating 

the Burr Type X testing-effort expenditure. (Quadri et al 

2009). 

4) 
(1 )

( ) (1 ).
t

r e
m t a e

β θα − ⋅⋅ ⋅ −
= ⋅ −                                  (6d) 

A NHPP model with mean value function incorporating 

the Generalized Exponential testing-effort expenditure. 

(Quadri et al 2006) 

 

In addition, the failure intensity at testing time t of the 

various NHPP is given by 
( ) ( )

( ) ( )
dm t r W t

t a r w t e
dt

λ
− ⋅

= = ⋅ ⋅ ⋅                                        (7) 

The expected number of errors to be detected 

eventually is: 

( ) (1 )
r a

m a e
− ⋅

∞ = ⋅ −                                           (8) 

This implies that even if a software system is tested 

during an infinitely long duration, all errors remaining in the 

system cannot be detected [19], [32] Thus, the mean number 

of undetected errors if a test is applied for an infinite 

amount of time is 

( ) (1 )
r a

a m a a e
− ⋅

− ∞ = − ⋅ −  
r a

a e
− ⋅

= ⋅                               (9) 

That is, not all the original errors in a software system 

can be fully tested with a finite testing effort since the effort 

expenditure is limited to α . 

 

IV. SOFTWARE RELIABILITY MEASURES 

Based on the NHPP model with ( )m t , we can derive the 

following quantitative measures for reliability assessments 

[3], [32]. If ( )N t  represent the number of errors remaining in 

the system at testing time t , then the mean of ( )N t and its 

variance for various SRGM models are given by 
( ) [ ( )] [ ( )] ( )] ( ) ( )

( ) ( )( ) [ ( )]

r t E N t E N N t m m t

r W t r W
a e e Var N t

= = ∞ − = ∞ −

− ⋅ − ⋅ ∞= ⋅ − =

                                    (10) 

The software reliability represents the probability that no 

failure occurs in the time interval ( , )t t t+∆  given that the last 

failure occurred at time t∆  is given by 

( ) ( )[ ( ) ( )] [ ]( | )
rW t rW t tm t t m t a e eR R t t e e

− ⋅ − ⋅ +∆+∆ − − −= ∆ = =              (11) 

The instantaneous mean time between failures (MTBF) 

at arbitrary testing can be defined as a reciprocal of error 

detection rate in (7). Then, the instantaneous MTBF is given 

by 

(1 )1
( )

( ) 1( )

m t
t er e

e
MTBF t

m tt m t t ea r m t t e e

δβα

δλ δ βα β δ

⋅⋅ ⋅⋅ ⋅ −
== =

⋅− ⋅ − ⋅ ⋅⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

      (10) 

V. PARAMETER ESTIMATION METHODS 

MLE and LSE techniques are used to estimate the 

model parameters [18], [17], [16]. Estimation of maximum 

likelihood is a general technique that may be applied when 

the underlying distribution of the data are specified or 

known and is better in deriving confidence intervals and the 

asymptotic normal distribution for ML estimates. On the 

other hand, LSE is fairly general technique which is applied 

in most practical situations for small or medium size data for 

better estimates [22], [23], [24], [27], [18], [6], [4]. It 

minimizes the sum of squares of the deviation between what 

we expect and what we actually observe. In using LSE one 

of the common assumptions is that the standard deviation of 

the error term is constant over all the values of the predictor 

variable. This assumption, however clearly does not hold in 

every modeling application. For example, in testing effort 

data, it may appear that the precision of testing effort varies 

as the time changes. In such situations, when it may not be 

reasonable to assume every observation should be treated 

equally, one could use WLSE to maximize the efficiency of 

parameters estimation [22]. Sometimes, however, the 

likelihood equations may be complicated and difficult to 

solve explicitly. In that case one may have to solve with 

some numerical methods to obtain the estimates. 

[a] Least square method (LSE) 

The various parameters e.g. , , , andmα β θ δ   in the various 

testing-effort function [27], [8], [22], [23], can be estimated 

by the method of LSE. These parameters are determined for 

n observed data pairs in the 

form ( , )( 1,2,..., ;t W k nk k = 0 ... )1 2t t tn< < < < , where Wk  

is the cumulative testing effort consumed in time (0, ]tk  

[b] Maximum likelihood method 

Suppose that the estimated testing-effort parameters 

like ˆ ˆˆ ˆ, , andmα β δ  in various current testing-effort 

functions have been obtained by the method of least squares 

discussed earlier. The estimators for a  and r  are 

determined for n  observed data pairs in the form 

( , ) ( 1, 2 , ... , ; 0 ... ) ,1 2t y k n t t tk k n= < < < <  where yk  is the 

cumulative number of software errors detected up to time tk . 

VI. PERFORMANCE ANALYSIS 

In order compare performance analysis of various 

existing/proposed models, experiments on actual software 

failure data have been performed. 

A. Criteria for Model Comparison 

To evaluate the performance of a software reliability 

growth model and to make a fair comparison with the other 

existing SRGM, we describe the following comparison 

criteria. 

[a] The Accuracy of Estimate (AE) is defined [18], [31], 

[4], [13] as: 

       AE = M aa

M a

− , Where Ma is the actual cumulative      

number of detected errors after the test, and a  is the 

estimated number of initial errors. For practical purposes, 
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aM  is obtained from software error tracking after software 

testing. 

[b] The mean of Squared Errors (Long-term predictions) is 

defined [16], [4], [13] as: 

      MSE = 1 2[ ( ) ] ,1
1

k
m t mi

k i

−�
=

 Where ( )m ti , is the expected 

number of errors at time ti  estimated by a model, and 

( )m ti  is the observed number of errors at time ti . MSE 

gives the qualitative comparison for long-term predictions. 

A smaller MSE indicates a minimum fitting error and better 

performance [6], [10], [11]. 

[c] The Coefficient of Multiple Determination is defined 

[18], [17] as: 

( ) ( )
( )

ˆ ˆ ˆˆ ˆ ˆ,0 ,1,1 , , ,
2

ˆ̂ ,0 ,1,1

S S m
R

S

α α β δ

α

−
= , Where ˆ̂α  is the LSE of  

α  for the model with only a constant term, that is 0β = , 

1m=  and 1δ =  in (12). It is given by in 

ˆ̂α =
1

ln

1

n
W k

n k
�
=

.Therefore, 
2

R measures the 

percentage of total variation about the mean accounted 

for by the fitted model and tells us well a curve fits the 

data. It is frequently employed to compare models and 

assess which model provides the best fit to the data. 

The best model is the one which provides the higher 2
R , 

that is, closer to 1 [12]. To investigate whether a 

significant trend exists in the estimated testing-effort, 

one could test the hypothesizes : 0, 10H mβ = =  and 1δ = , 

against : 01H β ≠  or at least m or 0δ ≠  using F-test by 

merely forming the ratio 

{ } ( )
{ }

ˆ ˆ ˆ ˆˆ ˆ ˆ,0,1,1 , , , /3

ˆ̂,0,1,1 /( 4)

S S m

F
S n

α α β δ

α

� �−
� �� �

=
−  

If the value of F  is greater that (3, 4)F nα − , which is the 

α  percentile of the F  distribution with degrees of freedom 

3 and n-4, we can be (1 )100α− ) percent confident that 0H  

should be rejected, that is, there is a significant trend in the 

testing-effort curve. 

[d] The Predictive Validity is defined [18], [17] as the 

capability of the model to predict future behavior from 

present and past failure behavior. Assume that we have 

observed q failures by the end of test time tq . We use 

the failure data up to time ( )0t tq≤  to determine the 

parameter of ( )m t . Substituting the estimates of these 

parameters in the mean value function yields the 

estimate of the number of failures ˆ ( )m tq  by t q . The 

estimate is compared with the actually observed number 

q. This procedure is represented for various values of 

te .The ratio 
ˆ ( )m t qq

q

−
 is called the relative error. 

Values close to zero for relative error indicate more 

accurate prediction and hence a better model. We can 

virtually check the predictive validity by plotting the 

relative error for normalized test time /t te q . 

B. Other Comparison criteria for evaluation [14], [15]: 

[a] ( ) ( ) Prediction Error( ) Actual observed Predicted Estimate
i i

PE = −  

[b] Variation =  
2( )

1

1

n
PE Biasi

i

n

−�
=

−
 

[c] Bias = 
1

1

n
P Ei

n i

⋅ �
=

 

[d] RMS-PE =  2 2
Bias Variation+  

 

[e] MRE = M Mestim ated actual

M actual

−  

 

[f] BMMRE = 
1

min( , )1

n M Mestimated actual

n M Mestimated actuali

−
⋅ �

=
 

 

C. Description of the Actual Data Set 

Table1: Comparative results of different SRGM for DS1 

 
95% CONFIDENCE LIMIT FOR DIFFERENT SELECTED 

MODELS (DSI) 

Models 
a r 

Lower Upper Lower Upper 

SGRM with Burr 

type X TEF [22] 
445.7304 685.6162 0.01372 0.02556 

SGRM with 

Exponential 

Weibull TEF[24] 

446.360 684.926 0.01375 0.02554 

SGRM with New 

Modified 

Weibull TEF[23] 

433.29 700.02 0.0130 0.026 

SGRM with 

Gompertz TEF 
385.1 489.5 0.02585 0.03917 

SGRM with 

Logistic TEF 
358 433.2 0.03399 0.04928 

SGRM with 

Rayleigh TEF 
348.6 569.6 0.01651 0.03817 

Yamada Delayed 

shaped Model 

with Logistic 

TEF 

300.8 361 0.09423 0.1334 

Yamada Delayed 

shaped Model 

with Rayleigh 

TEF 

291 347.5 0.1088 0.1589 

Yamada Delayed 

S shaped Model 

with Rayleigh 

TEF 

288.7 377.7 0.07507 0.1258 

G-O Model 465.4 1056 0.01646 0.04808 

Yamada Delayed 

S shaped Model 
343.7 404.4 0.1748 0.2205 

 

DS 1: The first set of actual data is from the study by 

Ohba [20]. The system is PL/1 data base application 

software, consisting of approximately 1,317, 000 lines of 

code. During the nineteen weeks experiments, 47.65 CPU 

hours were consumed and about 328 software errors were 

removed. The study reports that the total cumulative number 

of detected faults after a long period of testing is 358. 

 In order to estimate the parameters ˆ ˆˆ ˆ, , andmα β δ  of the 

various testing-effort function; we fit the actual testing 

effort data into various current testing effort function [27], 

[8], [22], [23] and solve it by using the various methods of 

estimation mentioned before. The estimated parameters for 
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various SRGM’s are obtained and there comparative result 

is shown as: 

 

 

 
 Table2: Comparison Results for Different TEF Based on DS1 

 
Model a  r  AE 

(%) 

MSE 

Proposed Model by Quadri et, al 

2010 (Eqn. (6a) with New modified 

Weibull curve ) 

566.66 0.0196 58.28 103.1 

Proposed Model by Quadri et, al 

2009 (Eqn. (6d) with Burr Type X 

TEF) 

565.67

3 

0.0196

4 
69.15 123.67 

Proposed Model by Quadri et, al 

2008 (Eqn. (6b) with Exponential 

Weibull curve ) 

565.64

3 

0.0196

4 
57.98 113.10 

Yamada exponential model (Eqn. (5) 

with exponential curve) 
828.25 0.0118 131.4 140.7 

Yamada Rayleigh model (Eqn. (5) 

with Weibull curve) 
565.35 0.0197 57.91 122.1 

Huang Logistic model 394.08 0.0427 10.06 118.6 

Ohba exponential mode 455.37 0.0267 27.09 206.9 

Inflection S-shaped model 389.1 0.0935 8.69 133.3 

Delayed S-shaped model 374.05 0.1977 4.48 168.7 

G-O model 760.0 0.0323 112.3 139.8 

Delayed S-shaped model with 

Rayleigh 
333.14 0.1004 6.93 798.5 

 
 

 

Table3: Summary of estimates of various NHPP model parameters for DS1 

 
Distributions 

Parameter Logistic Rayleigh Exponential 

Bias 0.0548 -1.1469 -16.5313 

Variation 0.3508 3.4579 6.3495 

RMS-PE 0.3551 3.6440 17.7087 

MRE -0.0040 0.2384 -0.5254 

PE end of testing -0.1022 6.0332 -13.2936 

BMMRE 24.3718 65.2980 81.4501 

 

VII. CONCLUSION 

In this research emphasis is given on comparison of 

some of the existing SRGMs incorporating various TEFs, 

we also provided an overview of general SRGM and basic 

assumptions that is followed by them. The use and 

applicability of such models during software development 

and operational phase is important. The objective was to 

provide a comparative analysis of some of the models that 

would be helpful in determining which model, if any, to use 

in a given software development environment. It should be 

noted that the above analytical models are primarily useful 

in estimating and monitoring software reliability. The 

models are compared using actual software data. One 

unique contribution of this paper is that we do not add any 

new models to the already large collection of SRGMs, 

rather we emphasize on the comparison of some of the 

existing SRGMs used in the software development process. 
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