
Volume 6, No. 6, July-August 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 40

A New Partition Based Association Rule Mining Algorithm for BigData
P.Prabakaran

Research Scholar,
Department of computer science,
Mass college of arts and science,
Kumbakonam, Tamilnadu, India.

Dr.K.RameshKumar, Ph.D.,
Research supervisor & Assistant professor

Department of computer science,
Mass college of arts and science,
Kumbakonam, Tamilnadu, India,

Abstract: Association Rule Mining is an important research area in the field of Data Mining especially in case of ‘Sales transactions’. A number
of algorithms have been presented in this regard. In this paper a comparison of PARTITION algorithm with CMA algorithm is presented after
improving the PARTITION algorithm. In this study, randomized partitioning of database is done. The database is randomized so that real
random data is available for better results. The randomized partitioning of database has been implemented in different tool, i.e., VB. Net, as
compared to CMA, which uses MATLAB for randomization so as to achieve better performance and efficient results. In the end it has been
proved with extensive experiments that although Randomized PARTITION algorithm takes two database scans as compared to CMA that takes
single database scan, still it gives better results with more efficiency than CMA.

Keywords: Data Mining, Association Rule Mining, Randomized PARTITION Algorithm

I. INTRODUCTION

In the past few years the amount of data in business
organizations has been increased to a greater extent, so the
extraction of useful information from such databases is an
uphill and challenging task. Data mining techniques can be
applied in various fields like sales transaction, marketing,
finance, insurance, medicine and fraud detection etc.
Interesting association relationships are much helpful in
taking good business decisions like how to increase sales or
purchases process. Its basic aim is to analyze entire huge
database to find the frequently occurring item sets together.
For the rule generation it takes one or multiple scans of the
whole database. Association rule mining can be best
explained by a simple example of market basket analysis
that basically determines which groups of products or items
are sold or purchased together most frequently at the same
time. Customer buying behavior can be best analyzed by
this process, as it helps in finding association among
different item sets. For example if customers buy soft drink
and chips together mostly with in the same visit to the
superstore then using this information for the next time the
shop keeper will place the soft drink and chips in the nearer
shelves. Such shelf arrangement of these items will increase
the sales process in future visits to the store. Similarly if a
person orders a birthday cake to some bakery, then he is
likely to be purchasing some birthday candles as well. If the
baker is aware of the association between candles and the
birthday cake then he must be offering his customers to
purchase candles from him, hence supporting his candle
business as well. Market basket analysis is helpful for the
retailers in the best adjustments of catalogue design and
store layouts etc.

In this study an improved version of PARTITION
algorithm is presented and it has been proved through
various experiments that its performance is much better than
previously implemented PARTITION algorithm as it
reduces the memory usage as well as time. Its efficiency is
also compared with previously implemented CMA

algorithm and it has been proved that due to its efficient
partitioning technique of database it gives better results than
CMA in terms of time efficiency.

EXISTING RULE MINING ALGORITHMS

Association rule mining for the first time was
introduced by Agrawal et. al. (1993). It has remained highly
in use by the pundits and practitioners of the data mining for
more research since its inception. Many algorithms have
been discovered in this field. According to Han and Kamber
(2001), association rule mining searches for the interesting
relationships among the items in a given dataset. For
example, if the support = 5%, confidence=70%.
Association rule for the last discussed example of birthday
cake and candle is:
Birthday cake => candles

Rule interestingness can be measured well by support
and confidence. Support=5% shows that for the above
discussed rule, the birthday cake and candles are bought
together in all transactions. Confidence=70% means that
70% of the customers who buy a birthday cake also
purchased birthday candles.

Association rule mining basic concept as illustrated by
Han and Kamber (2001) is as follows: Let I = {i1,i2,…,im}
be the set of items. Let D, the task-relevant data, is a set of
database transactions where each transaction T is a set of
items such that T ⊂ I. Each transaction is associated with an
identifier TID. Let A be a set of items. A transaction T is
said to contain A if and only if A⊂ T. An association rule is
an implication of the form A⇒B, where A ⊂ I, B ⊂ I, and
A∩B = φ. The rule A⇒B holds in the transaction set D
with support s, where s is the percentage of transactions in D
that contain A U B (i.e., both A and B). This is taken to be
the probability, P (AUB). The rule A⇒B has confidence c in
the transaction set D if c is a percentage of transactions in D
containing A that also contain B. This is taken to be the
conditional probability, P (B|A). That is,

Support (A⇒B) = P (AUB). (1)

 P.Prabakaran et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015, 40-46

© 2015-19, IJARCS All Rights Reserved 41

Confidence (A⇒B) = P (B|A). (2)
Rules that satisfy both a minimum support threshold

(min_sup) and a minimum confidence threshold (min_conf)
are called strong. By convention, we write support and
confidence value so as to occur between 0% and 100%,
rather than 0 to 1.0.

Association rule mining is a two-step process. Firstly,
find all frequent itemsets: by definition, each of those
itemsets will occur at least as frequently as a pre-determined
minimum support count. Secondly, generate strong
association rules from the frequent itemsets: by definition,
these rules must satisfy minimum support and minimum
confidence. The association rules are generated simply
using the following formula:
If (support ({Y, X})) ≥ min_conf. (3)
 support ({X})

 Then X⇒Y is a valid rule.

Here X is called the antecedent of the rule, whereas Y
makes the consequent of the rule.

Many algorithms have been discovered in this field.
The pioneer work in this area was presented by Agrawal and
Srikant (1994). They discussed Apriori algorithm. Apriori
is termed as the best base algorithm for all other subsequent
algorithms. Apriori was an iterative algorithm which used
complete bottom search to find out large 1-itemset in first
pass. Next pass generated candidate itemsets and checked
the support. The process repeated until all large itemsets
were found. Other variants of Apriori, AprioriTid and
AprioriHybrid were also discussed by them in the same
paper. In Apriori for n iterations, n scans of the entire
database were done. AprioriTid overcame this problem in
later iterations, as it did not use the whole database for
counting support after the first pass. Best features of both
Apriori and AprioriTid were combined in AprioriHybrid
which showed good performance than the other two in real
applications.

DHP (Direct Hashing and Pruning) algorithm was
presented by Park et. al. (1995), which was an extension of
Apriori algorithm. It was confined to the generation of large
itemsets, the step one of the mining association rules. The
problem with this algorithm was that database pruning
benefit was quite ambiguous.

Zaki (1999) presented the survey of parallel and
distributed association rule mining algorithms. These
algorithms were divided into groups according to the
techniques utilized, database structure and search techniques
etc. This paper also provided the design space of parallel
and distributed algorithms either implemented on distributed
or shared–memory architecture. The aim of this paper was
to provide a reference for more research. It also described
the challenges and problems in the field of association rule
mining.

Savasere et. al. (1995) presented PARTITION
algorithm that worked in two phases. Logical division of
horizontal database into non-overlapping partitions was
done. Then locally large itemsets were found for each
partition. For each locally large itemset, the TIDs were
stored in hash tree. Further potentially large itemsets were
obtained by merging the locally large itemsets at the end of
phase I. To find the globally large itemsets actual support of
these itemsets was measured in phase II. For the available

memory to uncover accurate no. of partitions was
unsolvable by this algorithm.

Jamshaid et. al. (2007) implements CMA (Centralized
Mining of Association-Rules) algorithm for association rule
mining. In this algorithm the database was divided into
logical non overlapping partitions and then DMA algorithm
was applied on each partition to find local and global large
itemsets. This algorithm took just a single database scan
over each partition for the creation of large itemsets.

From the literature review it is concluded that despite
the recent advances in association rule mining algorithms,
there are still some problems like in large databases,
scanning is much expensive and the resulting candidate
itemsets are too large to fit in the aggregate memory. Data
skew, data size, multiple scans and pruning techniques
needs further study.

PROPOSED NEW RANDOMIZED PARTITION
ALGORITHM

In this paper, Randomized PARTITION algorithm has
been implemented. Logical non overlapping partitions are
created with both random and non random data. Results of
both randomized and non randomized partitions are
compared to see the effect of data skew on both locally and
globally large itemsets. Then the efficiency of Randomized
PARTITION algorithm is compared with CMA.

PARTITION algorithm was previously implemented in
Silicon Graphics Indy R4400SC workstation with a clock
rate of 150 MHz and 32 Mbytes of main memory. The data
resided on 1GB SCSI presented by Savasere et. al. (1995).

In this study Randomized PARTITION algorithm has
been implemented in the same environment as CMA except
the partitioning of database that has been done in a different
tool (i.e. CMA has used .NET while Randomized
PARTITION algorithm is using MATLAB) for achievement
of better performance and efficient results. This change in
partitioning technique increases the time efficiency of
algorithm as compared to CMA. In today’s world, time is
an important factor. Along with the need of accurate results,
time efficiency matters a lot. It is important to have better
results in less time and minimum cost. Randomized
PARTITION algorithm has also been improved by using
count structure rather storing TIDs in Hash tree as was done
in previously implemented PARTITION algorithm. This
change reduces the high memory usage and time as
compared to previously implemented PARTITION
algorithm.

Synthetic database is used for this study which is the
same database as was used by CMA. It is also assumed that
transactions are in the form (TID, i1, i2, i3). The items are
assumed to be kept sorted in lexicographic order. Similar
assumption is also made by Han and Kamber (2001).

Algorithm
//Read database sequentially
Read_Database
P=Create_Partitions (rand)
For x=1 to P
Begin
Generate_Candidate_Itemsets Ci for px
For i=1 to k
Begin

 P.Prabakaran et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015, 40-46

© 2015-19, IJARCS All Rights Reserved 42

//Generate local large itemsets Li for pi from Ci and store
items and their count in structure Si
Si=Gen_Local_Large_Itemset Li
 End
//store value in global candidate structure
Merge local large itemsets to form global candidate itemsets
Gi_C
End
//Generate globally large itemsets Gi from Gi_C
Gi=Gen_Global_Large_itemset (Gi_C)

Table 1: Notations Used

Notations Definition
Px Partitions (x=1 to 4)
Ci_L Local candidate itemsets
Li Local large itemsets
Si Structure for storing local large itemsets along

with their counts in particular partition pi
Gi_C Global candidate itemsets containing local large

itemsets along with their counts
Gi Globally large itemsets
* Not possible

Working of Randomized Partition Algorithm

First of all database is read in sequential order. Then
logical non overlapping randomized or non randomized
partitions are created. Partition size is chosen in such a way
that for a specific time a whole partition can easily reside in
memory. Partition size should not be very small or very
large, as small partitions are negatively affected by data
skew and in large partitions for intermediate results
processing buffer requirements can exceed the available
space, so risk is involved in both cases. Candidate large 1
itemsets are generated for all partitions. Then local large 1
itemsets are generated containing items having their support
greater than user defined minimum support within each
partition and the candidate itemsets whose minimum support
is less than user defined minimum support are pruned away.
Here a count structure is used for large itemsets rather than
storing TIDs in a Hash tree. Storage of TIDs in hash tree is
wastage of time and memory that’s why count structure is
used for finding large itemsets directly. These large
itemsets are then merged and stored in global candidate 1
itemset along with their counts for the generation of globally
large itemsets. From large 1 itemsets, candidate large 2
itemsets are generated from which local large 2 itemsets are
generated for each partition. The process continues upto
locally large k itemset generation. Finally globally large
itemsets are generated and global candidate itemsets having
minimum support less than user defined minimum support
are pruned away. Randomized PARTITION algorithm
reduces the time complexity up to O (n) as compared to
CMA whose time complexity is O (n3). Experimental
results proved that Randomized PARTITION is 3 times
more efficient than CMA.

A. Functions Of Randomized Partition Algorithm:
Function [T] = Read_Database
Reads the entire database sequentially and returns the
transactions in an array.
Function [P] = Create_Partitions (rand)

This function takes rand as argument. If rand=0 then
sequential (non randomized) non overlapping partitions are
created otherwise T is first randomized and then logical non

overlapping partitions are created and an array of partition P
is returned.

Function [LocalLargeItemset] =
Generate_Large_Itemsets (pi)

This function creates candidate itemsets for all
partitions and then from these candidate itemsets local large
itemsets are generated for each partition. This function
returns locally large itemsets for each partition.

Function [GlobalCandidate] =
Generate_Global_Candidate (LocalLargeItemsets)

This function takes LocalLargeItemsets as an argument,
merge them and generates global candidate itemset.

Function [GlobalLargeItemset] =
Generate_Global_Itemsets (GlobalCandidate)

This function takes GlobalCandidate as an argument
and generates globally large itemsets RIP.

B. Explanation of Randomized Partition Algorithm
with Example:

Performance of Randomized PARTITION algorithm
can be best demonstrated by the case study. Following
dataset was used for the case study: The dataset shown in
Table II was randomized as shown in Table III to find out
large itemsets. The results generated by this dataset are
shown in Table IV. For testing the algorithm, many
experiments were performed by taking both random and non
random data. Number of items in the given dataset was 5.

Initially, the database was read sequentially and four
logical non overlapping partitions were created. Then local
and global itemsets for sequential database partitions were
generated. In the second step, the database was randomized
and again logical non overlapping partitions (P1, P2, P3, P4)
were created. After partition creation, the Randomized
PARTITION algorithm was applied to find locally large 1-
itemsets for each partition. From this, candidate 2-itemset
was generated and then locally large 2-itemset for each
partition was created. This process continued unless up to k
large itemsets were found. The algorithm stored counts of
the locally large itemsets in a structure rather than using a
hash tree for this process. This change reduced the high
memory usage as compared to previously implemented
PARTITION algorithm. Then large itemsets of all lengths
were merged to produce global candidate itemsets from
which the globally large itemsets of all lengths were
generated. Table V shows the experimental results of
randomized and non-randomized partitions with 100
transactions.

The comparison of results show that in non randomized
or sequential partitions, there was data skew involved which
caused outliers while randomization of partitions removed
the outliers. Table VI shows the results of comparison of
Randomized PARTITION algorithm with CMA.
Experimental results show that although Randomized
PARTITION algorithm takes two database scans for large
itemset creation still its efficiency is better than CMA which
takes one database scan for large itemset creation. The time
complexity of partitioning technique as well as the rest of
the algorithm is much better than CMA. Many experiments
were performed using varying size of datasets. Table VII
shows some of the experimental results with 20, 100, 1000,
10,000 transactions. Given dataset calculates upto large 3-
itemsets. Randomized PARTITION algorithm can calculate
upto k itemsets with other datasets. Randomized
PARTITION algorithm was also compared with previously

 P.Prabakaran et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015, 40-46

© 2015-19, IJARCS All Rights Reserved 43

implemented PARTITION algorithm and it was observed
that its efficiency is better in terms of memory usage and
time as shown in Table VIII. Extensive experiments were

performed with different datasets for large itemset
generation upto k itemset to check the efficiency of
algorithm.

Table 2: Sequential Dataset

Partitions

P1 P2 P3 P4

T1: A,B,C T26: A,D,E T51: A,E T76: A,C,D,E

T2: A,B,D T27: A,B,C,D,E T52: A,B,E T77: B,C,E

T3: B,D,E T28: C,D,E T53: B,D,E T78: C,D,E

T4: A,B,E T29: B,C,D,E T54: B,C,E T79: B,C,D,E

T5: A,C,D T30: A,D,E T55: C,D T80: A,D,E

T6: A,C,E T31: A,B,E T56: A,D,E T81: C,D,E

T7: A,C,D T32: D,E T57: A,D,E T82: B,D,E

T8: B,D,E T33: A T58: A,C T83: A,B,C,E

T9: C,D T34: C,D T59: A,B,C,E T84: B,C,E

T10: C,D,E T35: C,D,E T60: A,B,C,D T85: B,C,D

T11: A,C,D T36: B,C T61: A,C,D T86: C,D,E

T12: A,B,E T37: A,C T62: A,C,D,E T87: B,E

T13: B,D,E T38: A,C,D,E T63: D,E T88: A,B,E

T14: D,E T39: D,E T64: C,D,E T89: A,B,C

T15: C,D,E T40: B,D,E T65: A,B,D T90: A,C,E

T16: A,D,E T41: A,B T66: B,D,E T91: B,C,E

T17: A,B,C,D T42: A,C T67: C,D,E T92: B,D,E

T18: B,C,E T43: A,B,C T68: A,D,E T93: A,C,E

T19: A,C,E T44: B,C,D T69: B,D,E T94: B,C,E

T20: B,C,D T45: D,E T70: A,C T95: D,E

T21: A,B,D,E T46: B,C,D,E T71: A,B,C T96: C,E

T22: C,D,E T47: C,D,E T72: A,C,D,E T97: B,D,E

T23: B,E T48: D,E T73: B,C,D,E T98: A,B,D,E

T24: A,C,D T49: C,D T74: A,D,E T99: D,E

T25: B,D,E T50: A,D T75: B,C,D,E T100: A,C,D,E

 P.Prabakaran et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015, 40-46

© 2015-19, IJARCS All Rights Reserved 44

Table 3: Randomized Dataset

Partitions

P1 P2 P3 P4

T24: A,C,D T95: D,E T70: A,C T81: A,C,D

T92: B,D,E T53: B,D,E T54: B,C,E T23: B,E

T31: A,B,E T49: C,D T77: B,C,E T65: A,B,D

T8: B,D,E T72: A,C,D,E T74: A,D,E T9: C,D

T42: A,C T69: B,D,E T60: A,B,C,D T63: D,E

T21: A,B,D,E T67: C,D,E T28: C,D,E T45: D,E

T99: D,E T22: C,D,E T3: B,D,E T41: A,B

T91: B,C,E T75: B,C,D,E T11: A,C,D T73: B,C,D,E

T25: B,D,E T57: A,D,E T80: A,D,E T37: A,C

T55: C,D T44: B.C.D T64: C,D,E T59: A,B,C.E

T85: B,C,D T16: A,D,E T66: B,D,E T58: A,C

T15: C,D,E T19: A,C,E T96: C,E T89: A,B,C

T50: A,D T36: B,C T40: B,D,E T84: B,C,E

T51: A,E T48: D,E T43: A,B,C T5: A,C,D

T27:A,B,C,D,E T10: C,D,E T52: A,B,E T20: B,C,D

T30: A,D,E T78: C,D,E T79: B,C,D,E T93: A,C,E

T94: B,C,E T33: A T56: A,D,E T62: A,C,D,E

T39: D,E T7: A,C,D T76: A,C,D,E T18: B,C,E

T26: A,D,E T35: C,D,E T47: C,D,E T13: B,D,E

T2: A,B,D T98: A,B,D,E T71: A,B,C T34: C,D

T88: A,B,E T4: A,B,E T90: A,C,E T17: A,B,C,D

T87: B,E T61: A,C,D T14: D,E T1: A,B,C

T29: B,C,D,E T46: B.C.D.E T32: D.E T82: B,D,E

T97: B,D,E T83: A,B,C,E T6: A,B,C T86: C,D,E

T68: A,D,E T38: A,C,D,E T12: A,B,E T100:A,C,D.E

 P.Prabakaran et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015, 40-46

© 2015-19, IJARCS All Rights Reserved 45

Table 4: Results of Local and Global Itemset Generation

Local Large itemsets (Li)
Global Large
Itemset (Gi)

P1
Item = Count

P2
Item = Count

P3
Item = Count

P4
Item = Count

Gi
Item = Count

L1:B=14
D=18, E=19
L2:*
L3:*
L4:*
L5:*

L1:C=16
D=19,
E=19
L2:DE=17
L3:*
L4:*
L5:*

L1:C=15 D=15,
E=20
L2:*
L3:*
L4:*
L5:*

L1:C=18
D=15
E=14
L2:*
L3:*
L4:*
L5:*

G1:D=52
E=72
G2:*
G3:*
G4:*
G5:*

Table 5: Comparison of number of large itemsets of randomized and non randomized datasets

Sequential Randomized 1 Randomized 2 Randomized 3

ΣLi P Gi ΣLi P Gi ΣLi P Gi ΣLi P Gi

L1=14
L2= 1
L3= *
L4= *
L5= *

G1=3
G2=*
G3=*
G4=*
G5=*

L1=12
L2= 1
L3= *
L4= *
L5= *

G1=2
G2=*
G3=*
G4=*
G5=*

L1=12
L2= 1
L3= *
L4= *
L5= *

G1=2
G2=*
G3=*
G4=*
G5=*

L1=11
L2= 2
L3= *
L4= *
L5= *

G1=2
G2=*
G3=*
G4=*
G5=*

Table 6: Comparison of Randomized Partition with CMA

CMA Randomized PARTITION
Time complexity of Partitioning database=O(n3)
Time complexity of algorithm after partitioning=O(n3)

Time complexity of Partitioning database=O(n)
Time complexity of algorithm after partitioning=O(n)

Table 7: Comparison of number of large itemsets with variable size of data

Datasets No. of Local Large itemsets Sum Gi
Trans m_sup P1 P2 P3 P4 ΣLi m_ sup Gi

20

3

L1=2
L2=1
L3=*
L4=*
L5=*

L1=5
L2=1
L3=*
L4=*
L5=*

L1=3
L2=2
L3=*
L4=*
L5=*

L1=4
L2=5
L3=2
L4=*
L5=*

14
9
2
*
*

10

G1=2
G2=1
G3=*
G4=*
G5=*

100

13

L1=3
L2=*
L3=*
L4=*
L5=*

L1=3
L2=1
L3=*
L4=*
L5=*

L1=4
L2=1
L3=*
L4=*
L5=*

L1=4
L2=1
L3=*
L4=*
L5=*

14
3
*
*
*

50

G1=3
G2=*
G3=*
G4=*
G5=*

1000

250

L1=4
L2=1
L3=*
L4=*
L5=*

L1=4
L2=1
L3=*
L4=*
L5=*

L1=4
L2=1
L3=*
L4=*
L5=*

L1=4
L2=1
L3=*
L4=*
L5=*

16
4
*
*
*

500

G1=4
G2=1
G3=*
G4=*
G5=*

1,0000

2500

L1=4
L2=1
L3=*
L4=*
L5=*

L1=4
L2=1
L3=*
L4=*
L5=*

L1=4
L2=1
L3=*
L4=*
L5=*

L1=3
L2=1
L3=*
L4=*
L5=*

15
4
*
*
*

5000

G1=3
G2=1
G3=*
G4=*
G5=*

Table 8: Comparison of previous partition with randomized partition

algorithm

Previous PARTITION Randomized PARTITION
Memory usage=increased
Hash tree storage

Memory usage=decreased
Structure with count

IV. CONCLUSION

This improved version of Randomized PARTITION
algorithm is more efficient than CMA as its partitioning
technique takes much less time than the one used by CMA.
Its time complexity is O (n) much better than the time
complexity of CMA that is O (n3). Its efficiency is greater
than CMA due to its changed partitioning technique. This
version of Randomized PARTITION algorithm is also more
efficient than previously implemented PARTITION
algorithm as it reduces the memory usage by simply storing
counts for each large itemset instead of storing the TIDs in
hash tree. This has also increased the time efficiency of

Randomized PARTITION algorithm as compare to
previously implemented PARTITION algorithm. In future
we have a plan to implement this algorithm in parallel
environment for better efficiency.

V. REFERENCES

[1] Han, J. and M. Kamber, 2001,Data Mining: concepts and
Techniques. Kaufmann Publishers, San Francisco,
Calfornia, USA, 2001.

[2] Agrawal, R., T.Imielinski, and A. Swami, 1993. Mining
Association Rules between Sets of Items in Large
Databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Washington, D.C.USA, May 1993, pp.207-216.

[3] Agarwal, R. and R.Srikant, 1994. Fast algorithms For
Mining Association Rules. In Proceddings of the 20th
International Conference on Very Large Data Bases,

 P.Prabakaran et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015, 40-46

© 2015-19, IJARCS All Rights Reserved 46

Santiago de Chile, Chile, September 1994, edited by
J.B.Bocca, M.Jarke, and C.Zaniolo, “Very Large Data
Bases”, Morgan Kaufmann Publishers, San Francisco, CA,
USA, pp. 487-499.

[4] Park. J.Soo, M. Chen and P.S.Yu, 1995. An Effective
Hash-Based Algorithm for Mining Association Rules. In
Proceedings of the ACM SIGMOD International
Conference on Management of Datga, May 1995, pp.175-
186.

[5] Zaki, M.J.1999. Parallel and Distributed Association
Mining: A Survey. In EEE Concurrency Journal, Special

issue on Parallel Mechanisms for Data Mining, Vol.7,
No.4, December 1999, pp.14-25.

[6] Savasere, A.E. Omiecinski and S.Navathe, 1995. An
Efficient Algorithm for Mining Association Rules in Lagre
Databases, In Proc. Of the 21st Int’l VLDB Conference,
Zurich, Switzerland, September 1995, pp.432-444.

[7] Jamshaid, S., Z. Jalil, M,S.H.Khiyal and M. Saeed, 2007.
Association Rule Mining in Centralized Databases,
Information technology Journal, Vol.6, Issue 2, 2007,
pp.181.

	INTRODUCTION
	EXISTING RULE MINING ALGORITHMS
	PROPOSED NEW RANDOMIZED PARTITION ALGORITHM
	Algorithm

	Table 2: Sequential Dataset
	Table 3: Randomized Dataset
	Table 4: Results of Local and Global Itemset Generation
	Table 5: Comparison of number of large itemsets of randomized and non randomized datasets
	Table 6: Comparison of Randomized Partition with CMA
	Table 7: Comparison of number of large itemsets with variable size of data
	CONCLUSION

