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Abstract: Association Rule Mining is an important research area in the field of Data Mining especially in case of ‘Sales transactions’.  A number 
of algorithms have been presented in this regard.  In this paper a comparison of PARTITION algorithm with CMA algorithm is presented after 
improving the PARTITION algorithm.  In this study, randomized partitioning of database is done.  The database is randomized so that real 
random data is available for better results.  The randomized partitioning of database has been implemented in different tool, i.e., VB. Net, as 
compared to CMA, which uses MATLAB for randomization so as to achieve better performance and efficient results.  In the end it has been 
proved with extensive experiments that although Randomized PARTITION algorithm takes two database scans as compared to CMA that takes 
single database scan, still it gives better results with more efficiency than CMA. 
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I. INTRODUCTION 

In the past few years the amount of data in business 
organizations has been increased to a greater extent, so the 
extraction of useful information from such databases is an 
uphill and challenging task.  Data mining techniques can be 
applied in various fields like sales transaction, marketing, 
finance, insurance, medicine and fraud detection etc.  
Interesting association relationships are much helpful in 
taking good business decisions like how to increase sales or 
purchases process.  Its basic aim is to analyze entire huge 
database to find the frequently occurring item sets together.  
For the rule generation it takes one or multiple scans of the 
whole database.  Association rule mining can be best 
explained by a simple example of market basket analysis 
that basically determines which groups of products or items 
are sold or purchased together most frequently at the same 
time.  Customer buying behavior can be best analyzed by 
this process, as it helps in finding association among 
different item sets.  For example if customers buy soft drink 
and chips together mostly with in the same visit to the  
superstore then using this information for the next time the 
shop keeper will  place the soft drink and chips in the  nearer 
shelves.  Such shelf arrangement of these items will increase 
the sales process in future visits to the store.  Similarly if a 
person orders a birthday cake to some bakery, then he is 
likely to be purchasing some birthday candles as well.  If the 
baker is aware of the association between candles and the 
birthday cake then he must be offering his customers to 
purchase candles from him, hence supporting his candle 
business as well.  Market basket analysis is helpful for the 
retailers in the best adjustments of catalogue design and 
store layouts etc.  

In this study an improved version of PARTITION 
algorithm is presented and it has been proved through 
various experiments that its performance is much better than 
previously implemented PARTITION algorithm as it 
reduces the memory usage as well as time.  Its efficiency is 
also compared with previously implemented CMA 

algorithm and it has been proved that due to its efficient 
partitioning technique of database it gives better results than 
CMA in terms of time efficiency. 

EXISTING RULE MINING ALGORITHMS 

Association rule mining for the first time was 
introduced by Agrawal et. al. (1993). It has remained highly 
in use by the pundits and practitioners of the data mining for 
more research since its inception.  Many algorithms have 
been discovered in this field.  According to Han and Kamber 
(2001), association rule mining searches for the interesting 
relationships among the items in a given dataset.  For 
example, if the support = 5%, confidence=70%.  
Association rule for the last discussed example of birthday 
cake and candle is: 
Birthday cake => candles 

Rule interestingness can be measured well by support 
and confidence.  Support=5% shows that for the above 
discussed rule, the birthday cake and candles are bought 
together in all transactions.  Confidence=70% means that 
70% of the customers who buy a birthday cake also 
purchased birthday candles. 

Association rule mining basic concept as illustrated by 
Han and Kamber (2001) is as follows:  Let I = {i1,i2,…,im} 
be the set of items.  Let D, the task-relevant data, is a set of 
database transactions where each transaction T is a set of 
items such that T ⊂ I.  Each transaction is associated with an 
identifier TID.  Let A be a set of items.  A transaction T is 
said to contain A if and only if A⊂ T.  An association rule is 
an implication of the form A⇒B, where A ⊂ I, B ⊂ I, and 
A∩B = φ.  The rule A⇒B holds in the transaction set D 
with support s, where s is the percentage of transactions in D 
that contain A U B (i.e., both A and B).  This is taken to be 
the probability, P (AUB). The rule A⇒B has confidence c in 
the transaction set D if c is a percentage of transactions in D 
containing A that also contain B.  This is taken to be the 
conditional probability, P (B|A).  That is,  
      
Support (A⇒B) = P (AUB).   (1) 
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Confidence (A⇒B) = P (B|A).  (2) 
Rules that satisfy both a minimum support threshold 

(min_sup) and a minimum confidence threshold (min_conf) 
are called strong.  By convention, we write support and 
confidence value so as to occur between 0% and 100%, 
rather than 0 to 1.0. 

Association rule mining is a two-step process.  Firstly, 
find all frequent itemsets: by definition, each of those 
itemsets will occur at least as frequently as a pre-determined 
minimum support count.  Secondly, generate strong 
association rules from the frequent itemsets: by definition, 
these rules must satisfy minimum support and minimum 
confidence.  The association rules are generated simply 
using the following formula: 
If    (support ({Y, X})) ≥ min_conf.  (3) 
          support ({X})   
 
 Then X⇒Y   is a valid rule. 

Here X is called the antecedent of the rule, whereas Y 
makes the consequent of the rule. 

Many algorithms have been discovered in this field.  
The pioneer work in this area was presented by Agrawal and 
Srikant (1994).  They discussed Apriori algorithm.  Apriori 
is termed as the best base algorithm for all other subsequent 
algorithms.  Apriori was an iterative algorithm which used 
complete bottom search to find out large 1-itemset in first 
pass.  Next pass generated candidate itemsets and checked 
the support.  The process repeated until all large itemsets 
were found.  Other variants of Apriori, AprioriTid and 
AprioriHybrid were also discussed by them in the same 
paper.  In Apriori for n iterations, n scans of the entire 
database were done.  AprioriTid overcame this problem in 
later iterations, as it did not use the whole database for 
counting support after the first pass.  Best features of both 
Apriori and AprioriTid were combined in AprioriHybrid 
which showed good performance than the other two in real 
applications. 

DHP (Direct Hashing and Pruning) algorithm was 
presented by Park et. al. (1995), which was an extension of 
Apriori algorithm.  It was confined to the generation of large 
itemsets, the step one of the mining association rules.  The 
problem with this algorithm was that database pruning 
benefit was quite ambiguous. 

Zaki (1999) presented the survey of parallel and 
distributed association rule mining algorithms.  These 
algorithms were divided into groups according to the 
techniques utilized, database structure and search techniques 
etc.  This paper also provided the design space of parallel 
and distributed algorithms either implemented on distributed 
or shared–memory architecture.  The aim of this paper was 
to provide a reference for more research.  It also described 
the challenges and problems in the field of association rule 
mining. 

Savasere et. al. (1995) presented PARTITION 
algorithm that worked in two phases.  Logical division of 
horizontal database into non-overlapping partitions was 
done. Then locally large itemsets were found for each 
partition.  For each locally large itemset, the TIDs were 
stored in hash tree.  Further potentially large itemsets were 
obtained by merging the locally large itemsets at the end of 
phase I.  To find the globally large itemsets actual support of 
these itemsets was measured in phase II. For the available 

memory to uncover accurate no. of partitions was 
unsolvable by this algorithm. 

Jamshaid et. al. (2007) implements CMA (Centralized 
Mining of Association-Rules) algorithm for association rule 
mining.  In this algorithm the database was divided into 
logical non overlapping partitions and then DMA algorithm 
was applied on each partition to find local and global large 
itemsets.  This algorithm took just a single database scan 
over each partition for the creation of large itemsets. 

From the literature review it is concluded that despite 
the recent advances in association rule mining algorithms, 
there are still some problems like in large databases, 
scanning is much expensive and the resulting candidate 
itemsets are too large to fit in the aggregate memory.  Data 
skew, data size, multiple scans and pruning techniques 
needs further study. 

PROPOSED NEW RANDOMIZED PARTITION 
ALGORITHM 

In this paper, Randomized PARTITION algorithm has 
been implemented.  Logical non overlapping partitions are 
created with both random and non random data.  Results of 
both randomized and non randomized partitions are 
compared to see the effect of data skew on both locally and 
globally large itemsets.  Then the efficiency of Randomized 
PARTITION algorithm is compared with CMA. 

PARTITION algorithm was previously implemented in 
Silicon Graphics Indy R4400SC workstation with a clock 
rate of 150 MHz and 32 Mbytes of main memory.  The data 
resided on 1GB SCSI presented by Savasere et. al. (1995). 

In this study Randomized PARTITION algorithm has 
been implemented in the same environment as CMA except 
the partitioning of database that has been done in a different 
tool (i.e. CMA has used .NET while Randomized 
PARTITION algorithm is using MATLAB) for achievement 
of better performance and efficient results.  This change in 
partitioning technique increases the time efficiency of 
algorithm as compared to CMA.  In today’s world, time is 
an important factor. Along with the need of accurate results, 
time efficiency matters a lot.  It is important to have better 
results in less time and minimum cost.  Randomized 
PARTITION algorithm has also been improved by using 
count structure rather storing TIDs in Hash tree as was done 
in previously implemented PARTITION algorithm.  This 
change reduces the high memory usage and time as 
compared to previously implemented PARTITION 
algorithm. 

Synthetic database is used for this study which is the 
same database as was used by CMA.  It is also assumed that 
transactions are in the form (TID, i1, i2, i3).  The items are 
assumed to be kept sorted in lexicographic order.  Similar 
assumption is also made by Han and Kamber (2001). 

Algorithm 
//Read database sequentially 
Read_Database 
P=Create_Partitions (rand) 
For x=1 to P 
Begin 
Generate_Candidate_Itemsets Ci for px 
For i=1 to k 
Begin 
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//Generate local large itemsets Li for pi  from Ci and store 
items and their count in structure Si 
Si=Gen_Local_Large_Itemset Li 
              End 
//store value in global candidate structure 
Merge local large itemsets to form global candidate itemsets 
Gi_C 
End 
//Generate globally large itemsets Gi from Gi_C 
Gi=Gen_Global_Large_itemset (Gi_C) 

Table 1: Notations Used 

Notations Definition 
Px Partitions (x=1 to 4) 
Ci_L Local candidate itemsets 
Li Local large itemsets 
Si Structure for storing local large itemsets along 

with their counts in particular partition pi 
Gi_C Global candidate itemsets containing local large 

itemsets along with their counts 
Gi Globally large itemsets 
* Not possible 

 
Working of Randomized Partition Algorithm 

First of all database is read in sequential order.  Then 
logical non overlapping randomized or non randomized 
partitions are created.  Partition size is chosen in such a way 
that for a specific time a whole partition can easily reside in 
memory.  Partition size should not be very small or very 
large, as small partitions are negatively affected by data 
skew and in large partitions for intermediate results 
processing buffer requirements can exceed the available 
space, so risk is involved in both cases.  Candidate large 1 
itemsets are generated for all partitions.  Then local large 1 
itemsets are generated containing items having their support 
greater than user defined  minimum support within each 
partition and the candidate itemsets whose minimum support 
is less than user defined minimum support are pruned away.  
Here a count structure is used for large itemsets rather than 
storing TIDs in a Hash tree.  Storage of TIDs in hash tree is 
wastage of   time and memory that’s why count structure is 
used for finding large itemsets directly.  These large 
itemsets are then merged and stored in global candidate 1 
itemset along with their counts for the generation of globally 
large itemsets.  From large 1 itemsets, candidate large 2 
itemsets are generated from which local large 2 itemsets are 
generated for each partition.  The process continues upto 
locally large k itemset generation.  Finally globally large 
itemsets are generated and global candidate itemsets having 
minimum support less than user defined minimum support 
are pruned away.  Randomized PARTITION algorithm 
reduces the time complexity up to O (n) as compared to 
CMA whose time complexity is O (n3).  Experimental 
results proved that Randomized PARTITION is 3 times 
more efficient than CMA. 

A. Functions Of Randomized Partition Algorithm: 
Function [T] = Read_Database 
Reads the entire database sequentially and returns the 
transactions in an array. 
Function [P] = Create_Partitions (rand) 

This function takes rand as argument.  If rand=0 then 
sequential (non randomized) non overlapping partitions are 
created otherwise T is first randomized and then logical non 

overlapping partitions are created and an array of partition P 
is returned. 

Function [LocalLargeItemset] = 
Generate_Large_Itemsets (pi) 

This function creates candidate itemsets for all 
partitions and then from these candidate itemsets local large 
itemsets are generated for each partition.  This function 
returns locally large itemsets for each partition. 

Function [GlobalCandidate] = 
Generate_Global_Candidate (LocalLargeItemsets) 

This function takes LocalLargeItemsets as an argument, 
merge them and generates global candidate itemset. 

Function [GlobalLargeItemset] = 
Generate_Global_Itemsets (GlobalCandidate) 

This function takes GlobalCandidate as an argument 
and generates globally large itemsets RIP. 

B. Explanation of Randomized Partition Algorithm 
with Example: 

Performance of Randomized PARTITION algorithm 
can be best demonstrated by the case study. Following 
dataset was used for the case study: The dataset shown in 
Table II was randomized as shown in Table III to find out 
large itemsets. The results generated by this dataset are 
shown in Table IV. For testing the algorithm, many 
experiments were performed by taking both random and non 
random data.  Number of items in the given dataset was 5.  

Initially, the database was read sequentially and four 
logical non overlapping partitions were created.  Then local 
and global itemsets for sequential database partitions were 
generated.  In the second step, the database was randomized 
and again logical non overlapping partitions (P1, P2, P3, P4) 
were created.  After partition creation, the Randomized 
PARTITION algorithm was applied to find locally large 1-
itemsets for each partition.  From this, candidate 2-itemset 
was generated and then locally large 2-itemset for each 
partition was created.  This process continued unless up to k 
large itemsets were found.  The algorithm stored counts of 
the locally large itemsets in a structure rather than using a 
hash tree for this process. This change reduced the high 
memory usage as compared to previously implemented 
PARTITION algorithm.  Then large itemsets of all lengths 
were merged to produce global candidate itemsets from 
which the globally large itemsets of all lengths were 
generated. Table V shows the experimental results of 
randomized and non-randomized partitions with 100 
transactions.   

The comparison of results show that in non randomized 
or sequential partitions, there was data skew involved which 
caused outliers while randomization of partitions removed 
the outliers. Table VI shows the results of comparison of 
Randomized PARTITION algorithm with CMA.  
Experimental results show that although Randomized 
PARTITION algorithm takes two database scans for large 
itemset creation still its efficiency is better than CMA which 
takes one database scan for large itemset creation.  The time 
complexity of partitioning technique as well as the rest of 
the algorithm is much better than CMA. Many experiments 
were performed using varying size of datasets.  Table VII 
shows some of the experimental results with 20, 100, 1000, 
10,000 transactions.  Given dataset calculates upto large 3-
itemsets.  Randomized PARTITION algorithm can calculate 
upto k itemsets with other datasets. Randomized 
PARTITION algorithm was also compared with previously 
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implemented PARTITION algorithm and it was observed 
that its efficiency is better in terms of memory usage and 
time as shown in Table VIII.  Extensive experiments were 

performed with different datasets for large itemset 
generation upto k itemset to check the efficiency of 
algorithm. 

 
Table 2: Sequential Dataset 

Partitions 

P1 P2 P3 P4 

T1: A,B,C T26: A,D,E T51: A,E T76: A,C,D,E 

T2: A,B,D T27: A,B,C,D,E T52: A,B,E T77: B,C,E 

T3: B,D,E T28: C,D,E T53: B,D,E T78: C,D,E 

T4: A,B,E T29: B,C,D,E T54: B,C,E T79: B,C,D,E 

T5: A,C,D T30: A,D,E T55: C,D T80: A,D,E 

T6: A,C,E T31: A,B,E T56: A,D,E T81: C,D,E 

T7: A,C,D T32: D,E T57: A,D,E T82: B,D,E 

T8: B,D,E T33: A T58: A,C T83: A,B,C,E 

T9: C,D T34: C,D T59: A,B,C,E T84: B,C,E 

T10: C,D,E T35: C,D,E T60: A,B,C,D T85: B,C,D 

T11: A,C,D T36: B,C T61: A,C,D T86: C,D,E 

T12: A,B,E T37: A,C T62: A,C,D,E T87: B,E 

T13: B,D,E T38: A,C,D,E T63: D,E T88: A,B,E 

T14: D,E T39: D,E T64: C,D,E T89: A,B,C 

T15: C,D,E T40: B,D,E T65: A,B,D T90: A,C,E 

T16: A,D,E T41: A,B T66: B,D,E T91: B,C,E 

T17: A,B,C,D T42: A,C T67: C,D,E T92: B,D,E 

T18: B,C,E T43: A,B,C T68: A,D,E T93: A,C,E 

T19: A,C,E T44: B,C,D T69: B,D,E T94: B,C,E 

T20: B,C,D T45: D,E T70: A,C T95: D,E 

T21: A,B,D,E T46: B,C,D,E T71: A,B,C T96: C,E 

T22: C,D,E T47: C,D,E T72: A,C,D,E T97: B,D,E 

T23: B,E T48: D,E T73: B,C,D,E T98: A,B,D,E 

T24: A,C,D T49: C,D T74: A,D,E T99: D,E 

T25: B,D,E T50: A,D T75: B,C,D,E T100: A,C,D,E 
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Table 3: Randomized Dataset 

Partitions 

P1 P2 P3 P4 

T24: A,C,D T95: D,E T70: A,C T81: A,C,D 

T92: B,D,E T53: B,D,E T54: B,C,E T23: B,E 

T31: A,B,E T49: C,D T77: B,C,E T65: A,B,D 

T8: B,D,E T72: A,C,D,E T74: A,D,E T9: C,D 

T42: A,C T69: B,D,E T60: A,B,C,D T63: D,E 

T21: A,B,D,E T67: C,D,E T28: C,D,E T45: D,E 

T99: D,E T22: C,D,E T3: B,D,E T41: A,B 

T91: B,C,E T75: B,C,D,E T11: A,C,D T73: B,C,D,E 

T25: B,D,E T57: A,D,E T80: A,D,E T37: A,C 

T55: C,D T44: B.C.D T64: C,D,E T59: A,B,C.E 

T85: B,C,D T16: A,D,E T66: B,D,E T58: A,C 

T15: C,D,E T19: A,C,E T96: C,E T89: A,B,C 

T50: A,D T36: B,C T40: B,D,E T84: B,C,E 

T51: A,E T48: D,E T43: A,B,C T5: A,C,D 

T27:A,B,C,D,E T10: C,D,E T52: A,B,E T20: B,C,D 

T30: A,D,E T78: C,D,E T79: B,C,D,E T93: A,C,E 

T94: B,C,E T33: A T56: A,D,E T62: A,C,D,E 

T39: D,E T7: A,C,D T76: A,C,D,E T18: B,C,E 

T26: A,D,E T35: C,D,E T47: C,D,E T13: B,D,E 

T2: A,B,D T98: A,B,D,E T71: A,B,C T34: C,D 

T88: A,B,E T4: A,B,E T90: A,C,E T17: A,B,C,D 

T87: B,E T61: A,C,D T14: D,E T1: A,B,C 

T29: B,C,D,E T46: B.C.D.E T32: D.E T82: B,D,E 

T97: B,D,E T83: A,B,C,E T6: A,B,C T86: C,D,E 

T68: A,D,E T38: A,C,D,E T12: A,B,E T100:A,C,D.E 
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Table 4: Results of Local and Global Itemset Generation 

Local Large itemsets (Li) 
Global Large 
Itemset (Gi) 

P1 
Item = Count 

P2 
Item = Count 

P3 
Item = Count 

P4 
Item = Count 

Gi 
Item = Count 

L1:B=14 
D=18, E=19 
L2:* 
L3:* 
L4:* 
L5:* 

L1:C=16 
D=19, 
E=19 
L2:DE=17 
L3:* 
L4:* 
L5:* 

L1:C=15 D=15, 
E=20 
L2:* 
L3:* 
L4:* 
L5:* 

L1:C=18 
D=15 
E=14 
L2:* 
L3:* 
L4:* 
L5:* 

G1:D=52 
E=72 
G2:* 
G3:* 
G4:* 
G5:* 

Table 5: Comparison of number of large itemsets of randomized and non randomized datasets 

Sequential Randomized 1 Randomized 2 Randomized 3 

ΣLi P Gi ΣLi P Gi ΣLi P Gi ΣLi P Gi 

L1=14 
L2= 1 
L3= * 
L4= * 
L5= * 

G1=3 
G2=* 
G3=* 
G4=* 
G5=* 

L1=12 
L2= 1 
L3= * 
L4= * 
L5= * 

G1=2 
G2=* 
G3=* 
G4=* 
G5=* 

L1=12 
L2= 1 
L3= * 
L4= * 
L5= * 

G1=2 
G2=* 
G3=* 
G4=* 
G5=* 

L1=11 
L2= 2 
L3= * 
L4= * 
L5= * 

G1=2 
G2=* 
G3=* 
G4=* 
G5=* 

Table 6: Comparison of Randomized Partition with CMA 

CMA Randomized PARTITION 
Time complexity of Partitioning database=O(n3) 
Time complexity of algorithm after partitioning=O(n3) 

Time complexity of Partitioning database=O(n) 
Time complexity of algorithm after partitioning=O(n) 

Table 7: Comparison of number of large itemsets with variable size of data 

Datasets No. of Local Large itemsets Sum Gi 
Trans m_sup P1 P2 P3 P4 ΣLi m_ sup Gi 
 
 
20 

 
 
3 

L1=2 
L2=1 
L3=* 
L4=* 
L5=* 

L1=5 
L2=1 
L3=* 
L4=* 
L5=* 

L1=3 
L2=2 
L3=* 
L4=* 
L5=* 

L1=4 
L2=5 
L3=2 
L4=* 
L5=* 

14 
9 
2 
* 
* 

 
 
10 

G1=2 
G2=1 
G3=* 
G4=* 
G5=* 

 
 
100 

 
 
13 

L1=3 
L2=* 
L3=* 
L4=* 
L5=* 

L1=3 
L2=1 
L3=* 
L4=* 
L5=* 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

14 
3 
* 
* 
* 

 
 
50 

G1=3 
G2=* 
G3=* 
G4=* 
G5=* 

 
 
1000 

 
 
250 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

16 
4 
* 
* 
* 

 
 
500 

G1=4 
G2=1 
G3=* 
G4=* 
G5=* 

 
 
1,0000 

 
 
2500 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

L1=4 
L2=1 
L3=* 
L4=* 
L5=* 

L1=3 
L2=1 
L3=* 
L4=* 
L5=* 

15 
4 
* 
* 
* 

 
 
5000 

G1=3 
G2=1 
G3=* 
G4=* 
G5=* 

 
Table 8: Comparison of previous partition with randomized partition 

algorithm 

Previous PARTITION Randomized PARTITION 
Memory usage=increased 
Hash tree storage 

Memory usage=decreased 
Structure with count 

IV. CONCLUSION 

This improved version of Randomized PARTITION 
algorithm is more efficient than CMA as its partitioning 
technique takes much less time than the one used by CMA.  
Its time complexity is O (n) much better than the time 
complexity of CMA that is O (n3).  Its efficiency is greater 
than CMA due to its changed partitioning technique. This 
version of Randomized PARTITION algorithm is also more 
efficient than previously implemented PARTITION 
algorithm as it reduces the memory usage by simply storing 
counts for each large itemset instead of storing the TIDs in 
hash tree.  This has also increased the time efficiency of 

Randomized PARTITION algorithm as compare to 
previously implemented PARTITION algorithm. In future 
we have a plan to implement this algorithm in parallel 
environment for better efficiency. 
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