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Abstract: In a decision tree algorithm, an important factor is measure for selecting the best split the records. There are many measures that can 

be used to determine the splitting attributes based on Entropy, Gini index, Information Gain and so on. In this paper, two metrics from the 

consistency degree of two knowledges is used as the criteria for selecting the attribute that will best separate the samples into individual classes. 

These new measures also to define on covering rough sets for constructing decision tree on incomplete information systems. 
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I. INTRODUCTION 

There are many criteria for selecting splitting attributes in 
building decision tree [5], such as ID3, C4.5 which use an 
entropy-based measure known as information gain as a 
heuristic for selecting the attribute. The measures developed 
for selecting the best split are often based on the degree of 
impurity of the child nodes. The smaller the degree of 
impurity, the more skewed the class distribution. 

Rough set theory, proposed by Pawlak in early 1980s is a 
mathematical tool to deal with uncertainty and incomplete 
information. Nowadays, it turns out that this approach is of 
fundamental importance to artificial intelligence and 
cognitive sciences, especially in the areas of data mining, 
machine learning, decision analysis, knowledge 
management, expert systems and pattern recognition.  
[1-3,7-8] 

In recent years, researchers proposed different effective 
algorithms for constructing descision tree based on rough 
sets, classification algorithms may be categorized as follows 
[7]: 

Using new measures for selecting the attribute that 

separate the samples into individual classes (for example -
dependability, Fixed information gain,.. ) [2][7] 

Reducing irrelevant attribute by the rough set theory then 
condensed the sample by removing duplicate instance [1][7]. 

In this paper, two metrics from the consistency degree of 
two knowledges based on rough set theory is used as the 
criteria for selecting the attribute that will best separate the 
samples into individual classes. This new measures also to 
define on covering rough sets for constructing decision tree 
on incomplete information systems. Furthermore, the 
experiments show that the proposed measures can effectively 
process as traditional measures. 

The rest of this paper is organized as follows: In Section 
2 we introduce some basic concepts and notations which will 
be used throughout this paper. The new measure and 
properties are presented in Section 3. Experimental results 
are summarized in Section 4. Finally, Section 5 concludes 
this paper. 

II. BASIC CONCEPTS 

We recall some basic concepts of rough set, the interested 
reader is referred to [8] 

Definition 1:  Knowledge: A knowledge is a pair < U,P > 
where U is a nonempty finite set and P is an equivalence 
relation on U. P will also denote the partition generated by 
the equivalence relation. 

Definition 2. Finer and Coarser Knowledge : A 
knowledge P is said to be finer than the knowledge Q if 
every block of the partition P is included in some block of 
the partition Q. In such a case Q is said to coarser than P. We 

shall write it as P  Q. 

Definition 3. Let P and Q be two equivalence relations 

over U. The P-positive region of Q, denoted by )(QPOSP is 

defined by )()(
/

XPQPOS
QUX

P  , where )(XP = {Y 

∈ U/P : Y ⊆ X} called P-lower approximation of X. 
Definition 4.  Dependency degree : Knowledge Q 

depends in a degree k (0 ≤k ≤ 1) on knowledge P , written as 

P ⇒k Q, iff k = 
U

QPOSP )(
 where X  denotes cardinality of 

the set X.  
If k = 1, we say that Q totally depends on P and we write 

P ⇒ Q; and if k = 0 we say that Q is totally independent of P. 
Proposition 1.  

1) If PR k  and PQ l then ,PQR m  for some 

),max( lkm  

2) If QPR k  then PR m  and PQ l , for 

some kml,  

3) If QR k  and PR l then ,PQR m  for some 

),min( lkm  

4) If PQR k  then QRPR lm , ,  for some 

kml,  

5) If PR k  and QP l then QR m  for some 

1klm . 

Definition 5.  Consistency degree: Let P and Q be two 
knowledges such that P ⇒a Q and Q ⇒b P. The consistency 
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degree between the two knowledges denoted by Cons(P,Q) is 
given by: 

2
),(

n

nabba
QPCons  , where n is a non negative 

integer. 
Inconsistency degree: We now define a measure of 

inconsistency by:  InCons(P,Q) = 1 - Cons(P,Q) 
Definition 6.  Covering: Let U is a nonempty set of 

objects, C a family of subsets of U. If none subsets in C is 

empty, and C =U, then C is called a covering of U. The 
pair (U,C) will be called generalized approximation space. 

It is clear that a partition of U is certainly a covering of 
U, so the concept of a covering is an extension of the concept 
of a partition. 

Definition 7.  Tolerance space: A tolerance space is 
structure <U, R> where U is a nonempty set of objects and R 
is a reflexive and symmetric binary relation defined on U. 

Definition 8.  We shall say that a covering C1 is finer 

than a covering C2  written as C1   C2  iff  

2
2

CjC , jnjj CCC ,..,, 21 C1 such that 
n

i

jij CC

1

2
i.e 

every element of C2 may be expressed as the union of some 
elements of  C1. 

For any x ∈ U the set  

)}(:{ iii
C
x CyCxCUyP  

will be called kernel of x. Let P be the family of all kernels 

(U, C) i.e. P = { }: UxPC
x . Clearly P  is a partition of U. 

Definition 9.  Let (U,C) will be called generalized 
approximation space and X be a subset of U. Then the lower 
and upper approximations are defined as follows: 

}:{)(

}:{)(

XPPXC

XPPXC

C
x

C
x

C
x

C
x

 

III. METRIC ON THE SET OF PARTITION  

Definition 10.   Let  U is a nonempty finite set, P,Q are 

partitions on U.  If P ⇒a Q and Q ⇒b P then two distance 

functions between P and Q is denoted by ρ(P,Q) and 

),( QP  defined as  

1. 
2

)(2
),(

ba
QP  

2. ),(1),(),( QPConsQPInsConsQp  

Proposition 2.   The distances between two partitions are 

metrics. 

Proof   

1. It is clear that 1),(0 QP , because 1,0 ba  

 We have to prove 3 properties: 

a. 0),( QP iff  P=Q 

b. ),(),( PQQP  

c. P,Q,R are partitions: 
 ),(),(),( RQQPRP  

  

a. 0),( QP iff  P=Q 

If P ⇒a Q and Q ⇒b P then 0),( QP  

10
2

)(2
),( ba

ba
QP  

QP  

b. ),(),( PQQP  

Evidently, by the role of P,Q is symmetric in 

distance function. 

c. P,Q,R are partitions:  

),(),(),( RQQPRP  

The assumption that 

QRRQPQQPPRRP vumlba ,,,,,

We proof that 

2

)(2

2

)(2

2

)(2 vumlba
 

 l+m+u+v-2  a+b 

(l+u-1)+(m+v-1)  a+b (*) 

By virtue of proposition 1 (5), there are 

1

1

vmb

ula
 

This completes the proof (*). 

Since a, b, c, it follows that is a metric. 

 

2. Assume, with any partitions P,R,Q 

QRRQPQQPPRRP vumlqp ,,,,,

 

a. 0),( RP iff  P=R 

0
2

1),(1

0),(10),(

n

npqqp
QPCons

QPConsRP

 

10
2

)1()1()1(
qp

n

pqnqp
, 

    (because 1,0 qp ) 

   QPPQQP  

  

b. ),(),( PQQP  

Obviously, the role of  P,Q is symmetric in distance 

function. 

 

c. ),(),(),( RQQPRP  

We have, 

),(),(),( RQQPRP  

2

2

2

2

2

2

n

nuvvun

n

nlmmln

n

npqqpn

 

)(2)1( vumlqppquvlmn  (**) 

From proposition 1 (5), there are 

       
1

1

mvq

ulp
 

Hence, 

)1()1()1()1(

1)1)(1(

)1(

mvmuvl

mvuluvlm

pquvlm

 

0)1()1()1()1( mvmv   

(because 1,0 ul ) and 

)0112

2

vumlmvul

vulqp
 

Thus the left hand side of (**) is negative, the right 

hand side of (**) is positive. 

So (**) is established, i.e is a metric. 
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IV. APPLICATIONS  

A. Decision tree on complete  Information  

In the decision tree algorithms, the measures for 

selecting the best split are often based on the degree of 

impurity of the child nodes. The smaller the degree of 

impurity, it more skewed the class distribution. In this 

section, we propose two measures for selecting the best 

splitting attribute:  

),(1),( QPQP and 

),(),(1),( QPConsQPQP ,  

with n=2 in formula of Cons(), and P,Q are partitions 

corresponding to attributes P,Q. 

For example, we use a sample dataset (Golf Dataset – 

Table 2.) to compare building of decision tree for , . 

We have, 

},,,,,,,,,,,,,{ 14131211987654321 uuuuuuuuuuuuuU

14U  

The partition of  U under P1, P2,P3,P4 and D respectively: 

}},,,,,,,,{

},,,,,{{},{

}},,,,,{

},,,,,,,,{{},{

}},,,,{

},,,,,,,,,{{},{

}},,,{

},,,,,,{},,,,{{},,{

}},,,,{

},,,,{},,,,,{{},,{

1312111097543

14862121

141211762

1310985431214

1311976

141210854321213

9765

1412111084133213212

1410654

1312731198213211

uuuuuuuuu

uuuuuDD

uuuuuu

uuuuuuuuWW

uuuuu

uuuuuuuuuZZ

uuuu

uuuuuuuuuuYYY

uuuuu

uuuuuuuuuXXX

D

P

P

P

P

 )(1 DPOSP 2/7, 0)1(PPOSD  

7/1),1( DP , 14/1),1( DP  

0)(2 DPOSP , 0)2(PPOSD  

 0),2( DP , 0),2( DP  

0)(3 DPOSP , 0)3(PPOSD  

 0),3( DP , 0),3( DP  

0)(4 DPOSP , 0)4(PPOSD  

 0),4( DP , 0),4( DP  

Thus, we choose P1 is root node, then there are 3 

branches 

- Sunny: U1= },,,,{ 119821 uuuuu ,  

- Overcast:U2= },,,{ 131273 uuuu , 

-  Rain: U3= },,,,{ 1410654 uuuuu   

We now turn to Sunny class with 

 

}}{},,{},,{{},,{ 911821
1
3

1
2

1
1

1
2 uuuuuYYYP  

}},{},,,{{},{ 119821
1
2

1
1

1
3 uuuuuZZP  

}},{},,,{{},{ 119821
2

1
1

1
1

4 uuuuuWWP  
1
D = }},{},,,{{},{ 119821

1
2

1
1 uuuuuDD  

5/3)( 1
2 DPOSP , 0)2(1 PPOS

D
 

10/3),2( 1DP , 20/3),2( 1DP  

1)( 1
3 DPOSP , 1)3(1 PPOS

D
 

1),3( 1DP , 1),3( 1DP  

1)( 1
4 DPOSP , 1)4(1 PPOS

D
 

1),4( 1DP , 1),4( 1DP  

 

Thus, we can choose P3 or P4 is splitting attribute. At 

this time we chose  P3. 

There are 2 sub-branch from “Sunny” class 

- Humidity-High: { },, 821 uuu  

- Humidity Normal: },{ 119 uu  

Overcast: U2= },,,{ 131273 uuuu  with partition of decision 

attribute D: { },,,{ 131273 uuuu } (only lass) 

Rain: U3= },,,,{ 1410654 uuuuu   

}},{},,{{},{ 6514,104
3

2
3

1
3

2 uuuuuYYP , 

}},{},,,{{},{ 1461054
3

2
3

1
3

4 uuuuuWWP  

3
3D

},{ 3
2

3
1 DD { }},{},,,{ 1461054 uuuuu  

0)( 3
2 DPOSP , 0)2(3 PPOS

D
 

 0),2( 3DP , 0),2( 3DP  

1)( 3
4 DPOSP , 1)4(3 PPOS

D
 

 1),4( 3DP , 1),4( 3DP  

Thus, we can choose P4 is splitting attribute (on U3) 

Finally, we have decision tree as same as decision tree 

which  constructed by traditional measure Entropy or Gain 

information Figure 2. 

 

B. Decision tree on incomplete information  

With definition 8, we can propose a heuristic for 

constructing decision tree on incomplete information. The 

basic heuristic is as follow: 

1. On incomplete information S=(U,AT), where U is  

a nonempty finite set of objects, and AT is a non-empty 

finite set of attributes (it may happen that some of attributes 

values for an object are missing. To indicate such a 

situation a situation at distinguished value, so called null 

value. We will denote null value by *). We define a binary 

similarity relation SIM(A), A AT, between objects that are 

possibly indiscernible in terms of values of attribute AT. 

SIM(A) = {(x,y) UxU: A(x)=A(y) or A(x)= * or A(y)=*} 

Clearly, SIM(A) is a tolerance relation. If any objects in U 

has not null value on A, SIM(A) is equivalence relation. 

Let A
xC  note the object set {y U|(x,y) SIM(A)}. We 

have CA ={
A
xC : x U} is a covering of U and P  be the 

family of all kernels (U, CA) i.e. PA = { }: UxP AC
x , which 

is a partition of U. 

2. With each A AT, A has null values on some 

objects in U, let  (U,PA) be knowledge defined by A.  

3. From definition above knowledge which 

determined by an attribute, we can consider the measures 

which defined in 4.1 for selecting best splitting attribute. 

For example, we consider a sample incomplete 

information (Table.1). 
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We have, 

},,,,,{ 654321 uuuuuuU   6U  

The covering  U under P, M, S and D respectively: 

}},{},,,,{},,,,{{ 5365325431 uuuuuuuuuuCP  

 PP }},{},,{},,{{ 536241 uuuuuu P  

}},,,{},,,,,,{{ 5432654321 uuuuuuuuuuCM  

 PM = }},,,{},,{{ 543261 uuuuuu M  

 }}{},,,,,{{ 365421 uuuuuuCS  

  PS = }}{},,,,,{{ 365421 uuuuuu S  

CA = }},,,{},,,{{ 6543621 uuuuuuu   

  PA = }}{},,,{},,{{ 654321 uuuuuu = A  

  DD uuuuuuC }}{},{},,,,{{ 536421  

 )(DPOSP 2/3, )(PPOSD 1/3 

  ),( DM 1/2, ),( DP 13/36 

 )(DPOSM 0, )(MPOSD 1 

 ),( DM 1/2,  ),( DM 1/4 

 )(DPOSS 1/6, )(SPOSD 1 

  ),( DS 7/12, ),( DS 3/8 

 )(DPOSA 1/2, )(APOSD 5/12 

  ),( DA 5/12,  ),( DA 7/24 

 

Thus, we choose S is root node, then there are 2 

branches 

}{},,,,,{ 32654211 uUuuuuuU  

We now turn to U1 class with 

}}{},,{},,{{ 56241
1 uuuuuP  

1
M }},,{},,{{ 54261 uuuuu  

}}{},,{},,{{ 65421
1 uuuuuA

}}{},,,,{{ 56421
1

1 uuuuu
D

 

 )( 1DPOSP 1, )(1 PPOS
D

1/6 

 ),( 1DP 7/12, ),( 1DP 3/8. 

 )( 1DPOSM 2/6,  )(1 MPOS
D

1/6 

  ),( 1DM 1/4, ),( 1DM 11/72 

 )( 1DPOSA 1/2, )(1 APOS
D

1/3 

  ),( 1DA 1/3, ),( 1DA 5/24 

 

Thus, we can choose P is splitting attribute (on U1), there 

are 3 branches 

},{ 414 uuU , },,{ 625 uuU  }{ 56 uU  

and decision respectively 

}{4 GoodD , }{5 GoodD , }{6 ExcelD  

 In other words, we have the decision tree in Figure. 1 

There are two decision rules: 

    (S,Compact)  Poor 

 (S,Full)  (D,Good) (D,Excel) 

 This result is compatible with result in [3]. 

V. CONCLUSION 

 In this paper, we proposed two measures to determine 

the splitting attributes for constructing decision tree. This 

two measures developed from two metrics based on rough 

set. Unlike popular measures as Entropy, Information Gain, 

Gini index, new measures can use as heuristic on incomplete 

information. In our experiments, we compare constructing 

decision tree based on new measures and popular measures. 

The result shows that the decision tree which is based on 

new measures compatibility. However, next time we will 

test on many data sets to accurately assess the effectiveness 

of the new measures. 

We believe that new measures offered here will turn 

out to be useful also in other tolerance information systems. 
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Table 1. Incomplete Information 

 

 

 

 

 

 

 

U 
Price 

(P) 

Mileage  

(M) 

Size 

(S) 

Max_Speed 

(A) 

D 

u1 High High Full Low Good 

u2 Low * Full Low Good 

u3 * * Compact High Poor 

u4 High * Full High Good 

u5 * * Full High Excel 

u6 Low High    Full * Good 
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Figure 1. Decision tree from Incomplete 

Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

U 
Outlook 

(P1) 

Temp. 

(P2) 

Humidity 

(P3) 

Wind  

(P4) 

Play? 

(D) 

u1 Sunny Hot High Weak No 

u2 Sunny Hot High Strong No 

u3 Overcast Hot High Weak Yes 

u4 Rain Mild High Weak Yes 

u5 Rain Cool Normal Weak Yes 

u6 Rain Cool Normal Strong No 

u7 Overcast Cool Normal Weak Yes 

u8 Sunny Mild High Weak No 

u9 Sunny Cold Normal Weak Yes 

u10 Rain Mild Normal Strong Yes 

u11 Sunny Mild Normal Strong Yes 

u12 Overcast Mild High Strong Yes 

u13 Overcast Hot Normal Weak Yes 

u14 Rain Mild High Strong No 

Full 

Poor 
Price 

Compact 

Good Good Excel 

Size 

Wind 

High Normal Strong Weak 

Overcast Sunny Rain 

Outlook 

Humidity 

No Yes No Yes 

Yes 

High Low * 

Figure2. The Decision tree of  Golf Dataset 

 

Table 2. The Gofl Dataset 

 

 


