
Volume 6, No. 3, May 2015 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-2019, IJARCS All Rights Reserved 57

ISSN No. 0976-5697

CONFERENCE PAPER
4th National Conference on Recent Trends in Information

Technology 2015 on 25/03/2015
Organized by Dept. of IT, Prasad V. Potluri Siddhartha Institute of

Technology, Kanuru, Vijayawada-7 (A.P.) India

Survey on Inverted Index Compression over Structured Data

B.Usharani
Dept.of Computer Science and Engineering

Andhra Loyola Institute of Engineering and Technology

India

e-mail:usharani.bh@gmail.com

M.TanoojKumar
Dept.of ComputerScience and Engineering

Andhra Loyola Institute of Engineering and Technology

India

e-mail:mtanooj@gmail.com

Abstract: A user can retrieve the information by providing a few keywords in the search engine. In the keyword search engines, the query is

specified in the textual form. The keyword search allows casual users to access database information. In keyword search, the system has to

provide a search over billions of documents stored on millions of computers. The index stores summary of information and guides the user to

search for more detailed information. The major concept in the information retrieval(IR) is the inverted index. Inverted index is one of the

design factors of the index data structures. Inverted index is used to access the documents according to the keyword search. Inverted index is

normally larger in size ,many compression techniques have been proposed to minimize the storage space for inverted index. In this paper we

propose the Huffman coding technique to compress the inverted index. Experiments on the performance of inverted index compression using

Huffman coding proves that this technique requires minimum storage space as well as increases the key word search performance and reduces

the time to evaluate the query.

Keywords: Huffman Algorithm, inverted index, index compression ,keyword search, Lossless compression, Structured data, Variable length

encoding.

I. INTRODUCTION

Keyword search is the mechanism used for information

discovery and retrieval. Keyword search is a simple search

model that can be issued by writing a list of keywords.

Keyword based search enables users to easily access

databases without the need either to learn a structured query

language or to study complex data schemas. The essential

task in keyword search is to display query results which

automatically gather relevant information that is generally

fragmented and scattered across multiple places.

Search engine index size is hundreds of millions of

web pages. Search engines have to answer tens of millions

of queries every day. The purpose of storing an index is to

optimize speed and performance in finding relevant

documents for a search query. Without an index, the search

engine would scan every document in the corpus, which

would require considerable time and computing power. For

example, while an index of 10,000 documents can be

queried within milliseconds, a sequential scan of every word

in 10,000 large documents could take hours. The additional

computer storage required to store the index, as well as the

considerable increase in the time required for an update to

take place, are traded off for the time saved during

information retrieval.[1]

The first Google Index in 1998 already has 26 million pages,

and by 2000 the Google index reached the one billion

mark.[2]

The inverted index data structure is a key component of

keyword search. The index for each term can be sorted in

order of allowing ranked retrieval documents. Search

engines use the traditional docid ordering, where each

posting list is ordered by ascending document id, which

permits efficient retrieval. The compression of the docid

ordering of posting lists is the focus of our work. The

proposed system deals with the document id(docid) and

term frequency (tf) compression.

A. Structured Data

Data that resides in a fixed field within a record or file is

called structured data. This includes data contained in

relational databases and spreadsheets. Structured data first

depends on creating a data model – a model of the types of

business data that will be recorded and how they will be

stored, processed and accessed. This includes defining what

fields of data will be stored and how that data will be stored:

data type (numeric, currency, alphabetic, name, date,

address) and any restrictions on the data input (number of

characters; restricted to certain terms such as Mr., Ms. or

Dr.; M or F).Structured data has the advantage of being

easily entered, stored, queried and analyzed.[3]

B. Inverted Index

An inverted index(postings file or inverted file) is a data

structure used for document retrieval. Inverted index have

two variants :1)record level inverted index(inverted file

index or inverted file) – tells you which document contains

that particular word.2)word level inverted index(fully

inverted index or inverted list)—tells you both which

document contains that particular word and the

place(position) of the word in that particular document. This

can be represented as (document-id;no:of

occurrences,[position]).For example

D0– {this is to test a test}

Positions: 0 1 2 3 4 5

D1—{this is testing to test application}

D2—{this is a testing application}

The words would store in the inverted index like this:

Table 1:Inverted Index table

words Inverted file ndex inverted list

a {0,2} {(D0;1,[4])(D2;1,[2])}

application {1,2} {(D1;1,[5])(D2;1,[4])}

is {0,1,2} {(D0;1,[1])(D1;1,[1])(D2;1,[1])}

test {0,1} {(D0;2,[3,5])(D1;1,[4])}

http://en.wikipedia.org/wiki/Lexical_analysis

B. Usharani et al, International Journal of Advanced Research in Computer Science, 6 (3), May-2015, (Special Issue),57-61

© 2015-2019, IJARCS All Rights Reserved 58

CONFERENCE PAPER
4th National Conference on Recent Trends in Information

Technology 2015 on 25/03/2015
Organized by Dept. of IT, Prasad V. Potluri Siddhartha Institute of

Technology, Kanuru, Vijayawada-7 (A.P.) India

testing {1,2} {(D1;1,[2])(D2;1,[3])}

this {0,1,2} {(D0;1,[0])(D1;1,[0])(D2;1,[0])}

to {0,1} {(D0;1,[2])(D1;1,[3])}

C. Compression

Data Compression means to reduce the number of bits to

store or to transmit. Data compression techniques are of two

types

1) Lossless data compression-the original data can be

reconstructed exactly form the compressed data

2) Lossy data compression--the original data cannot

be reconstructed exactly from the compressed data.

With lossless data compression technique every single bit of

data is to be remained originally after the decompression

.But with lossy compression technique the file is to be

reduced permanently by eliminating the redundant data.

InputData Outputdata OutputData

Figure1. Compression Procedure

To compress the data there is the need to encode the data

The basic coding concepts are 1) Fixed length coding 2)

variable length coding

 In fixed length coding, same number of bits are used to

represent each character. In variable length coding variable

number of bits are used to represent a character. To avoid

ambiguity no code word is a prefix of another code word.

The variable length coding has a uniquely decodable code.

Huffman coding is a variable length lossless compression

coding technique. Huffman compression uses smaller codes

for more frequently occurring characters and larger codes

for less frequently occurring characters.

II. BACKGROUND AND RELATEDWORK

The Jinlin Chen, Terry Cook[12] use a special data

structure, Up Down Tree, to implement an efficient top-

down approach for DSP (d-gap sequential patterns)mining.

DSP information can be combined with Gamma codes for

index compression The disadvantage of gamma code with

d-gap is Encoding and decoding method is sequential, it

seems hard to implement .It requires a lot of bit-shifting and

masking, and they can be slow . the sequence of d-gaps (1,l,

1,l, 1,l) where l is a large number, has a very high degree of

structure for a more principled compression mechanism to

exploit, but is expensive and are better only for small

numbers.Basic d-gaps coding methods are Variable Byte,

which does not give the best compression performance

An entropy encoding is a lossless data

compression scheme that is independent of the specific

characteristics of the medium.One of the main types of

entropy coding creates and assigns a unique prefix-free

code to each unique symbol that occurs in the input.

These entropy encoders then compress data by replacing

each fixed-length input symbol with the corresponding

variable-length prefix-free output codeword.

Two of the most common entropy encoding

techniques are Huffman coding and arithmetic coding.[10]

Implementing arithmetic coding is more complex than

Huffman coding. Huffman coding is faster than arithmetic

coding. Arithmetic encoding is avoided because of patent

issues. For Huffman encoding the redundancy is almost zero

When more than two ―symbols‖ in a Huffman tree have the

same probability, different merge orders produce different

Huffman codes so, we prefer code with a smaller length

variance.

Different entropy coding techniques

A. Arithmetic Coding

1. It is a paid algorithm(protected by patent).

2. Statistical technique

B. Run length Coding

1. Compression ratio is low as compared to other

algorithms

2. In the worst case the size of output data can be two

times more than the size of input data.

C. LZW(Lempel–Ziv–Welch)

1. Amount of storage needed is indeterminate.

2. It is a paid algorithm

3. Management of string table is difficult.

D. Huffman Coding

Huffman constructs a code tree from the bottom up (builds

the codes from the right to left).The algorithm starts by

building a list of all the alphabet symbols in descending

order of their probabilities. It then constructs a tree, with a

symbol at every leaf node from the bottom up. This is done

in steps, where at each step the two symbols with the

smallest probabilities are selected, added to the top the

partial tree, deleted from the list, and replaced with an

auxiliary symbol representing the two original symbols.

When the list is reduced to just one auxiliary symbol , the

tree is complete. The tree is then traversed to determine the

codes of the symbols [6].

The codes generated using Huffman technique or

procedure are called Huffman codes. These codes are prefix

codes and are optimum for a given model (set of

probabilities). A code in which no codeword is a prefix to

another codeword is called a prefix code. The Huffman

procedure is based on two observations regarding optimum

prefix codes.

1. In an optimum code, symbols that occur more

frequently (have a higher probability of occurrence)

will have shorter code words than symbols that

occur less frequently.

2. In an optimum code, the two symbols that occur

least frequently will have the same length. The

code words corresponding to the two lowest

probability symbols differ only in the last bit. [7]

Though the codes are of different bit lengths, they can

be uniquely decoded. Developing codes that vary in length

according to the probability of the symbol they are encoding

makes data compression possible. And arranging the codes

as a binary tree solves the problem of decoding these

variable-length codes.[8]

E. Huffman Coding Advantages

1. Easy to implement

2. Simple technique

Compress Store/Transmit Decompress

http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Lossless_compression
http://en.wikipedia.org/wiki/Prefix-free_code
http://en.wikipedia.org/wiki/Prefix-free_code
http://en.wikipedia.org/wiki/Symbol_(data)
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Arithmetic_coding

B. Usharani et al, International Journal of Advanced Research in Computer Science, 6 (3), May-2015, (Special Issue),57-61

© 2015-2019, IJARCS All Rights Reserved 59

CONFERENCE PAPER
4th National Conference on Recent Trends in Information

Technology 2015 on 25/03/2015
Organized by Dept. of IT, Prasad V. Potluri Siddhartha Institute of

Technology, Kanuru, Vijayawada-7 (A.P.) India

3. Produces optimal and compact code

4. High speed

5. It is not a paid algorithm

6. Compression ratio for Huffman coding algorithm

falls in the range of 0.57 to 0.81.

7. Given the Huffman tree, very easy (and fast) to

encode and decode

8. When all the data is known in advance its better to

use Huffman encoding.

 When all the data is not known in advance its better

to use LZW.Huffman coding and arithmetic encoding (when

they can be used) give at least as good, and often better

compression than any universal code.

However, universal codes are useful when

Huffman coding cannot be used — for example, when one

does not know the exact probability of each message, but

only knows the rankings of their probabilities.[11]

These are some universal codes for integers

 Elias gamma coding

 Elias delta coding

 Elias omega coding

 Exp-Golomb coding

 Fibonacci coding

 Levenstein coding

 Byte coding, also known as comma coding

These are non-universal ones:

 unary coding, (which is used in Elias codes).

 Rice coding,

 Golomb coding, (which has Rice coding and unary

coding as special cases).

Universal codes are generally not used for precisely known

probability distributions, and no universal code is known to

be optimal for any distribution used in practice.

Table II: Comparisons of different Encoding techniques

 Huffman Arithmetic Lempel-Ziv-welch

Probabilities Known in

advance

Known in

advance

Not Known in

advance

Alphabet Known in

advance

Known in

advance

Not Known in

advance

Data Loss None None None

Symbols

dependency

Not used Not used Not used

Code Words One codeword
for each symbol

One
codeword for

all data

Code words for set of
 data

III. EXPERIMENT EVALUATION

The algorithm for the Huffman coding is

Algorithm:

1. Create a leaf node for each symbol and add it to the

queue.

2. While there is more than one node in the queue:

1. Remove the two nodes of highest priority

(lowest probability) from the queue

2. Create a new internal node with these two

nodes as children and with probability

equal to the sum of the two nodes'

probabilities.

3. Add the new node to the queue.

3. The remaining node is the root node and the tree is

complete

 The technique works by creating a binary tree of

nodes. These can be stored in a regular array, the size of

which depends on the number of symbols, n. A node can be

either a leaf node or an internal node. Initially, all nodes are

leaf nodes, which contain the symbol itself, the weight

(frequency of appearance) of the symbol and optionally, a

link to a parent node which makes it easy to read the code

(in reverse) starting from a leaf node. Internal nodes contain

symbol weight, links to two child nodes and the optional

link to a parent node. As a common convention, bit '0'

represents following the left child and bit '1' represents

following the right child. A finished tree has up to n leaf

nodes and n-1 internal nodes. A Huffman tree that omits

unused symbols produces the most optimal code

lengths[9].A sample tree with two nodes will look like as:

 0 1 1

Fig 2: Sample Huffman tree

The flow chart for the Huffman coding algorithm is :

 YES

 NO

Figure 3 Flowchart for Huffman Encoding

IV. IMPLEMENTATION

The Huffman algorithm is implemented by taking the

example as

PARENT

LCHILD RCHILD

End

Stop the process.Read 0‘s and 1‘s from

top to bottom to generate codewords

Start

Sort the symbols in descending order

according to their probabilities

Merge the two least probability

symbols into a single symbol

Assign ‗0‘ to the left branch and ‗1‘

to right branch

Remove the merged two symbols

from the probability table and add this

newly created symbol to the existing

probability table

Check whether

any unmerged

symbols exist?

http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Arithmetic_encoding
http://en.wikipedia.org/wiki/Elias_gamma_coding
http://en.wikipedia.org/wiki/Elias_delta_coding
http://en.wikipedia.org/wiki/Elias_omega_coding
http://en.wikipedia.org/wiki/Exponential-Golomb_coding
http://en.wikipedia.org/wiki/Fibonacci_coding
http://en.wikipedia.org/wiki/Levenstein_coding
http://en.wikipedia.org/w/index.php?title=Byte_coding&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Comma_coding&action=edit&redlink=1
http://en.wikipedia.org/wiki/Unary_coding
http://en.wikipedia.org/wiki/Golomb_coding
http://en.wikipedia.org/wiki/Golomb_coding
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Leaf_node
http://en.wikipedia.org/wiki/Internal_node

B. Usharani et al, International Journal of Advanced Research in Computer Science, 6 (3), May-2015, (Special Issue),57-61

© 2015-2019, IJARCS All Rights Reserved 60

CONFERENCE PAPER
4th National Conference on Recent Trends in Information

Technology 2015 on 25/03/2015
Organized by Dept. of IT, Prasad V. Potluri Siddhartha Institute of

Technology, Kanuru, Vijayawada-7 (A.P.) India

Eg: this is to test

Characters

Frequency 4 3 3 2 1 1 1

Figure 4.Characters and corresponding frequencies(- is used for space)

The characters are arranged according to their frequencies

(in descending order).We start by choosing the two smallest

nodes. There are three nodes with the minimal weight of

one. We choose 'h' and 'o' and combine them into a new

tree whose root is the sum of the weights chosen. We

replace those two nodes with the combined tree.

Figure 5. Combining the least two frequencies(h and o) as a single node

Repeat that step,choose the next two minimal nodes,it must

be e and the combined tree of h and o.The collection of

nodes shrinks by one each iteration.we remove two nodes

and add a new one back in.

Figure 6: Combining the least two frequencies(e and combined tree of h

and o) as a single node

Again, we pull out the two smallest nodes and build a tree of

weight 5:

Figure 7: Combining the least two frequencies(i and combined tree of h ,o

and e) as a single node

Build a combined node from s and –(space).The interior

nodes are used along the paths that eventually lead to valid

encodings, but the prefix itself does not encode a character.

Figure 8: Combining the least two frequencies(s and –(space)) as a single

node

Again, we pull out the two smallest nodes(5and t) and build

a tree of weight 9:

Figure 9: Combining the least two frequencies(t and combined tree of h,o,e

and i) as a single node

 Finally, we combine the last two to get the final tree. The

root node of the final tree will always have a weight equal to

e

-- i t S o

h

B. Usharani et al, International Journal of Advanced Research in Computer Science, 6 (3), May-2015, (Special Issue),57-61

© 2015-2019, IJARCS All Rights Reserved 61

CONFERENCE PAPER
4th National Conference on Recent Trends in Information

Technology 2015 on 25/03/2015
Organized by Dept. of IT, Prasad V. Potluri Siddhartha Institute of

Technology, Kanuru, Vijayawada-7 (A.P.) India

the number of characters in the input file.

Figure 10: Final Huffman tree

The Huffman tree after assigning 0 to the left child and 1 to

the right child will be seen as

Figure 11: Huffman Tree with 0‘s and 1‘s

Table III: Characters and their corresponding ASCII code and

variable length code

characters ASCII ASCII

Encoding

(fixed length)

Huffman Encoding

(variable length

code)

t 116 01110100 01

s 115 01110011 10

-(space) 32 00100000 11

i 105 01101001 001

e 101 01100101 0001

h 104 01101000 00000

o 111 01101111 00001

Using the standard ASCII encoding, this 15 character string

requires 15*8 = 120 bits total. But with Huffman coding

technique this 15 characters require only 40 bits .The string

"this is to test" encoded using the above variable-length

code table is:

 t h i s i s t o t e s t
0

1

0000

0

00

1

1

0

1

1

00

1

1

0

1

1

0

1

0000

1

1

1

0

1

000

1

1

0

0

1

V. CONCLUSION

This paper describes the inverted index compression over

structured data. Compression can greatly reduce the number

of disk accesses, with the help of Huffman coding, overhead

costs are much reduced and greatly increases the query

evaluation speed, When an index fits in main memory, the

transfer of compressed data from memory to the cache is

less than that of transferring uncompressed data.

Experiments results shown that inverted index compression

saves storage space and also increases the keyword search

speed. We implemented Huffman coding technique on

characters ,for the extension of this paper will be

implemented by using the Huffman coding to the sequence

of characters i.e words and then perform the index

compression.

VI. ACKNOWLEDGEMENTS

We like to express our gratitude to all those who gave us the

possibility to carry out the paper.We would like to thank to

REV.Fr.J.Thainese S.J ,Director , ALIET for stimulating

suggestions and encouragement.

VII. REFERENCES

[1] http://en.wikipedia.org/wiki/Search_engine_indexi

ng#The_forward_index

[2] http://googleblog.blogspot.in/2008/07/we-knew-

web-was-big.html

[3] http://www.webopedia.com/TERM/S/structured_da

ta.html

[4] http://en.wikipedia.org/wiki/Inverted_index

[5] http://en.wikipedia.org/wiki/Data_compression

[6] David Solomon ―,Data compression, The complete

Reference‖, Fourth edition, Springer

[7] Khalidsayood,‖ Introduction to data compression‖,

Third edition

[8] M.Nelson,J.L.Gailly,‖ The Data Compression

Book‖, second edition

[9] http://en.wikipedia.org/wiki/Huffman_coding

[10] http://en.wikipedia.org/wiki/Entropy_encoding

[11] http://en.wikipedia.org/wiki/Universal_code_(data_

compression)

[12] J. Chen,T. Cook― Using d-gap Patterns for Index

Compression‖,2007, ACM.

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Universal_code_(data_compression)
http://en.wikipedia.org/wiki/Universal_code_(data_compression)

