
Volume 6, No. 1, Jan-Feb 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 177

ISSN No. 0976-5697

m n

j=1 i=1

n m

j=1 i=1

n

j=1

Programming Development on Transportation Problem using c++ and Stepping Stone

for Evaluation

Adeoye Akeem .O.*
Department of mathematics/statistics

Federal Polytechnic Offa Nigeria

Babalola John.B

Department of mathematics/statistics

Federal Polytechnic Offa Nigeria

Igbinehi,E.M

Department of mathematics/statistics

Federal Polytechnic Offa Nigeria

Emiola Olawale.K.S

Department of mathematics/statistics

Federal Polytechnic Offa Nigeria

Abstract: The aim of this research is to develop a programm for three methods of solving transportation problems. C++ was used to write the

programm on initial feasible solution and optimal solution using North West Corner Rule, Least Cost Rule and Vogel Approximation Method.

Stepping stone is used to obtain the optimal solution. From the result of the analysis, we discovered that the Programming on Vogel

Approximation Method gives the same result at optimal solution and at low number of iterations. Hence we conclude that programming on

Vogel Approximation Method is the best method of finding initial feasible solution, optimal solution and for distribution of good.

Keywords: Optimal, Initial, Feasible, Cost and Solution.

I. INTRODUCTION

Transportation is the movement of people and

commodities from one place to another. The progress of any

recent organization depends on the effective utilization of

transportation system. Moreover, moving from one place to

another or distribution of goods and services always take

place through transportation system. The transportation

model depends on individual objectives and taste in terms of

cost, safety, speed and comfortability [1],[4],[6].

Production is the creation of goods and services to

satisfy human wants. According to the economic

Philosopher Adams Smith (1976), production is not

complete until the goods produced reach the final consumer.

After production, it is mandate for manufacturers to

discharge or distribute the products to the markets or various

depots and this can be achieved through effective

transportation system [2],[3],[5]. Transportation plays a

dominant role in the world economy because the cost of

transportation goes a long way in influencing the cost of

finished products. That is the lower the transportation cost

the cheaper the cost of products. This makes business

organization, individuals and government to look for

effective ways of solving transportation problems. From the

discussion above one can easily come to the conclusion that

the progress of any company is directly proportional to the

efficiency of the transportation method of the company.

Transportation problem can be described as a way of

distributing finished goods from different sources to

numerous destinations at a minimum cost or rate. Suppose

there are m warehouses, where commodities are stocked an

n markets (Locations) where they are needed and supply

available in the warehouses be S1,S2,S3 …Sm while the

demand at the market be d1,d2,d3…..dn. Let the unit cost of

shipping from warehouse i to market j be NCij. The

transpiration problem wants to find an optimal shipping

schedule which minimizes the cost of transportation from

the warehouse to the markets. The various ways by which a

particular commodity can be distributed from source to

destination is illustrated by the diagram below.

II. LINEAR PROGRAMMING FORMULATION

In order to formulate the transportation problem as a

linear programing problem, we define Xij as the quantity

shipped from warehouse i to market j, i = 1,2,….m and j = 1,

2, …n. The number of decision variables is given by the

product of m and n

The supply constraint guarantee that the total amounts

shipped from any warehouse does not exceed its capacity.

The demand constraint guarantee that the total shipped to

market including the non-negative constraints, the total

number of constraint is (m + n). The market demands of the

warehouse is equal to the total demand at the market.

 Si = dj

This implies that every available product at the

warehouse will be shipped to meet the minimum demand at

the markets. In this case, all the supply and the demand

constraint would become strict equalities and we shall have

a standard transportation problem given by

Min Z = CijXij

 Subject to

 Xij = Si i = 1, 2, ……………m (supply)

 Xij = di j = 1, 2, ……………n (demand)

Xij > 0 for i and j

Adeoye Akeem .O.et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,177-184

© 2010, IJARCS All Rights Reserved 178

The above transportation problem can be expanded as

follows.

 Min Z = C11X11+C12X12+….C1nX1n+C21X21+….C2nX2n + …

CmiXmi + …CmnXmn

 Subject to

 X11 + X12 + …+ X1n = S1

 X21 + X22 + …+ X2n = S2

 … … …

 Xm1 + Xm2 + …+ Xmn = Sm

 X11 + X21 + …+ Xm1 = d1

 X12 + X22 + …+ Xm2 = d2

 / /

 / /

 X1n + X2n + …+ Xmn = dn

 S1 > 0, dj > 0 for i = 1,2, …m, j

= 1,2,…n

III. METHOD OF SOLVING TRANSPORTATION

PROBLEM

The following are three methods employed in

establishing an initial feasible solution, they are

a. North West Corner Rule Method

b. Least Cost Rule Method

c. Vogel Approximation Method

IV. METHOD FOR ESTIMATING OPTIMAL

SOLUTION

After an Initial Feasible Solution to the distribution

problem has been obtained through North West Corner

Rule, Least Cost Rule and Vogel Approximation Method,

alternative solution must be evaluated. There are two

straight forward method for calculating the effect of

alternative allocation. In this research a program develops

will be used to find the initial feasible solution and optimal

solution using stepping stone method.

A. Stepping Stone Method:

Procedure for stepping stone method

a. Choose the empty cell unused square to be

evaluated.

b. Beginning with the selected empty cell, trace a

closed path (Moving horizontally and vertically)

from this empty cell via stone squares (used square)

back to the original cell. Only one closed path

exists for each empty cell in a given solution.

Although the path may skip over non-empty (stone)

or empty cells and may cross over itself. Corners of

the closed path may occur only at the stone squares

and the unused square (empty cell) being evaluated.

c. Assign plus (+) and Minus (-) signs alternatively at

each corner square of the closed path, beginning

with a plus sign at the empty cell. Assign these

signs by starting in either a clockwise or anti-

clockwise direction. The positive and negative

signs represent the addition or subtraction of 1 unit

to a cell.

d. Determine the net change in the costs as a result of

the changes made in tracing the path. Summing the

unit cost in each cell with a plus sign will give the

addition to the cost. The decrease in cost is

obtained by summing the unit cost in each cell with

a negative sign.

e. If all the improvement indices are greater than or

equal to zero stop. The solution obtained is optimal.

Otherwise go to step 6.

f. Develop a new solution and go to step 1 to develop

a new solution we shift a smaller quantity of the

stone that has negative figure to the most negative

cell of the improvement index.

g. Repeat the above steps until the solution is optimal.

That is, the improvement index is greater than or

equal to zero.

V. DESCRIPTION OF PROGRAM DEVELOPED

C++ is the programming language used to developed a

programming for solving transportation problem using

North West, Least Cost and Vogel Approximation Method

procedures for solving initial feasible solution and stepping

stone procedure for finding the optimal solution.

C++ is one of computer programming languages which

is a High Level Language (HLL). It is an Object Oriented

Programming (OOP) Language. It is also a scientifically

oriented and it is used in handling mathematical problems.

Some of the characteristics that make C++ different from

other common languages are.

a. It bridges the gap between conventional High Level

Language (HLL) and Machine Language (ML).

b. It is more efficient than other High Level Language

(HLL)

c. It is more portable and convectional in nature

d. It has more concise source code

e. It isolates its machine dependent feature to its

library formation

VI. PROGRAM SOURCE CODE ON

TRANSPORTATION

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#include <dos.h>

#include <time.h>

#define MAXC 500

#define MAXR 500

#define MT 250000

/* GLOBAL VARIABLE DECLARATION */

int NOSUP, NODEM, CP, CT, INIT, IT,IPR, N9,

MENUNEXT,cc;

int MOVEX[MT],

MOVEY[MT],OPT,MINI,MINJ,NOWI,NOWJ,INDIC;

float C[MAXR][MAXC],

FLOW[MAXR][MAXC],SUPPLY[MAXR], S1[MAXR];

float DEMAND[MAXC], D1[MAXC], U[MAXR],

V[MAXC], EC[MAXR+1][MAXC+1];

float R[MAXR][MAXC];

float TCOST, CMIN,XMIN,CT2;

int P[500][2*MAXC+5];//

int ITERATE;

int ID,IDES,IF1,IOPTIMAL,ISOU,IX,IY,LT,NR;

 double CC,QT,TT,XINFCC;

char SW, ch;

char *plant[] =

{"S1","S2","S3","S4","S5","S6","S7","S8","S9","S10","S11

","S12","S13","S14","S15","S16","S17","S18","S19","S20",

Adeoye Akeem .O.et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,177-184

© 2010, IJARCS All Rights Reserved 179

"S21","S22","S23","S24","S25","S26","S27","S28","S29","

S30","S31","S32","S33","S34","S35","S36","S37","S38","S

39","S40"};

char *depot[] =

{"D1","D2","D3","D4","D5","D6","D7","D8","D9","D10","

D11","D12","D13","D14","D15","D16","D17","D18","D19

","D20",

"D21","D22","D23","D24","D25","D26","D27","D28","D2

9","D30","D31","D32","D33","D34","D35","D36","D37","

D38","D39","D40"};

FILE *fp;

int IERROR;

char ERR_MSG[100];

void INPUT_MODE()

{

 int i, j, response;

 printf("

**

**** \n");

 printf(" COMPUTARIZATION OF

TRANSPORTATION MODEL\n");

 printf(" THIS PROGRAM CAN

ANALYSIS \n");

 printf(" INITIAL FEASIBLE SOLUTION

ALLOCATION \n");

 printf(" BY THREE METHOD\n");

 printf("

**

*** \n");

 printf(" 1. NORTH-WEST CORNER

RULE \n");

 printf(" 2. LEAST COST RULE \n");

 printf(" 3. VOGEL APPROXIMATION

\n");

 printf("\n\n\n");

 printf("HOW MANY SOURCES? ");

 scanf("%d",&NOSUP);

 // printf("LABEL SOURCES AND PRESS ENTER ");

 printf("HOW MANY DESTINATIONS? ");

 scanf("%d",&NODEM);

 MENUNEXT = 1;

 //printf("LABEL DESTINATIONS AND PRESS ENTER

");

 //for (i = 1;i<NODEM;i++) scanf("%s", depot[i]);

 do

 {

 printf("SELECT 1 OR 2 OR 3 \n");

 scanf("%d",&INIT);

 if ((INIT < 1) || (INIT > 3))

 printf("YOU HAVE ENTERED A WRONG

CHARACTER, TRY AGAIN! \n");

}

while((INIT < 1) || (INIT > 3));

printf("\n\n");

printf("

***\n");

printf(" HOW MUCH COST IS REQUIRED

\n");

printf(" BETWEEN EACH SOURCE AND

DESTIANTION \n");

printf("

**\n");

for(i=1;i<= NOSUP; i++)

{

 do

 {

 printf("\n\n");

 printf(" from %s \n", plant[i - 1]);

 for(j=1;j<= NODEM;j++)

 {

 printf(" to %s = ", depot[j-1]);

 scanf("%f", &C[i][j]);

 printf("\n");

 }

 printf("\n");

 printf(" IS THE DATA CORRECT ? <Y/N>\n");

 getchar();

 response = getchar();

 }

 while(response =='N' || response =='n');

}

printf("\n\n");

printf("

***\n");

printf(" WHAT AMOUNT IS POSSIBLE

\n");

printf(" FOR EACH SOURCE \n");

printf("

**\n");

do

{

 for(i=1;i<= NOSUP;i++)

 {

 printf(" %s = ",plant[i-1]);

 scanf("%f", &SUPPLY[i]);

 printf("\n");

}

printf(" IS THE DATA CORRECT ? <Y/N>\n");

getchar();

response = getchar();

}

while (response == 'N' || response == 'n');

printf("\n\n");

printf("

***\n");

printf(" WHAT AMOUNT IS REQUIRED \n");

printf(" FOR EACH DESTINATION \n");

printf("

**\n");

do

{

 for(j=1;j<= NODEM;j++)

 {

 printf(" %s = ",depot[j-1]);

 scanf("%f", &DEMAND[j]);

 printf("\n");

 }

 printf(" IS THE DATA CORRECT? <Y/N> \n");

 getchar();

 response = getchar();

}

while (response == 'N' || response == 'n');

}

 void Optimal();

 void Seek_Path(int I,int J);

Adeoye Akeem .O.et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,177-184

© 2010, IJARCS All Rights Reserved 180

 void Increase(int I,int J);

 void TCost();

/*BALANCE8*/

void BALANCE()

{

 float ss,ds,diff;

 int i,j;

 ss = 0.0;

 ds=0.0;

 for(i=1;i<=NOSUP;i++) ss = ss + SUPPLY[i];

 for(j=1;j<=NODEM;j++) ds+=DEMAND[j];

 N9 = NODEM;

 diff=ss-ds;

 if(diff == 0.0) return;

 if(diff < 0.0)

 {

 printf("The total supply must be greater than the total

demand.\n");

 printf(" So this problem is infeasible.\n");

 printf("Check the data.\n");

 printf(ERR_MSG," The total supply must be greater

than the total demand.");

 IERROR = 3;

 return;

 }

 NODEM+=1;

 for(i=1;i<=NOSUP;i++) C[i][NODEM]=1E+20;

 DEMAND[NODEM]=diff;

 if(IPR> 1)

 {

 if (diff == 0)

 {

 printf("\n The original problem is balanced."); return;

 }

 if (diff > 0)

 {

 printf("\n The unbalanced problem is now

balanced.");

 return;

 }

 }

 return;

 }

 /*NORTH*/

 void NWCR()

 {

 int i,j;

 for (i=1;i<=NOSUP;i++)

 for(j=1;j<=NODEM;j++)

 FLOW[i][j] = 0;

 for (i=1;i<=NOSUP;i++) S1[i] = SUPPLY[i];

 for(j=1;j<=NODEM;j++) D1[j] = DEMAND[j];

 for (i=1;i<=NOSUP;i++)

 {

 if (fabs(S1[i]) < 0.00001) continue;

 for (j=1;j<=NODEM;j++)

 {

 if (fabs(D1[j]) < 0.00001) continue;

 if ((fabs(S1[i] - D1[j]) < 0.00001))

 {

 FLOW[i][j] = S1[i];

 S1[i] = 0;

 D1[j] = 0;

 }

 else if (S1[i] < D1[j])

 {

 FLOW[i][j] = S1[i];

 D1[j] = D1[j] - S1[i];

 S1[i] = 0;

 }

 else

 {

 FLOW[i][j] = D1[j];

 S1[i] = S1[i] - D1[j];

 D1[j] = 0;

 }

 }

 }

 }

 void LCR()

 {

 int i,j,icom,MINI,MINJ;

 float CMIN;

 for (i=1;i<= NOSUP;i++)

 for(j=1;j<=NODEM;j++)

 FLOW[i][j] = 0;

 for (i=1;i<= NOSUP;i++) S1[i] = SUPPLY[i];

 for(j=1;j<=NODEM;j++) D1[j] = DEMAND[j];

 do

 {

 icom = 0;

 CMIN = 1E+20;

 MINI=0;

 MINJ=0;

 for (i=1;i<=NOSUP;i++)

 if (S1[i] > 0.00001)

 {

 icom = 1;

 for(j=1;j<=NODEM;j++)

 if(D1[j]>0.00001)

 {

 icom=1;

 if(CMIN > C[i][j])

 {

 CMIN = (C[i][j]);

 MINI = i;

 MINJ=j;

 }

 }

 }

 if (icom==1)

 {

 if(fabs(S1[MINI] -D1[MINJ])<0.00001)

 {

 FLOW[MINI][MINJ] = S1[MINI]; S1[MINI] = 0;

D1[MINJ] = 0;

 }

 if((fabs(S1[MINI] - D1[MINJ])>=0.00001) && (S1[MINI]

< D1[MINJ]))

 {

 FLOW[MINI][MINJ] = S1[MINI];D1[MINJ]-=

S1[MINI];S1[MINI]=0;

 }

 if((fabs(S1[MINI] -D1[MINJ])>=0.00001) && (S1[MINI]

> D1[MINJ]))

Adeoye Akeem .O.et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,177-184

© 2010, IJARCS All Rights Reserved 181

 {

 FLOW[MINI][MINJ] = D1[MINJ];S1[MINI]-=

D1[MINJ];D1[MINJ]=0;

 }

 }

 }

while (icom==1);

if (icom ==0) return;

}

/*VOGEL*/

void VOGEL()

{

 int LB,L;

 int i,A,j,k,icom,MINI,MINJ,imin1,jmin1,itt;

 float CMIN1,CMIN2,DIFF,DIFFT;

 LB = NOSUP + NODEM;

 LB = NOSUP + NODEM;

 LB = LB - 1;

 for(i = 1; i <= NOSUP; i++)

 for (j = 1; j <= NODEM; j++)

 FLOW[i][j] = 0;

 A = 1;

 //LB = 0;

 for(i=1;i<=NOSUP;i++) S1[i] = SUPPLY[i];

 for (j=1;j<=NODEM;j++) D1[j] = DEMAND[j];

 //do {

 for(L = 0; L <= LB; L++){

 icom = 0; DIFF =-1E+20;MINI = 0; MINJ= 0;

 for(i=1;i<=NOSUP;i++)

 {

 if (S1[i] > 0.00001)

 {

 icom = 1; CMIN1 = 1E+20;imin1 = 0;jmin1 = 0;

CMIN2 = 1E+20; itt= 0;

 for(j=1;j<=NODEM;j++){

 if(D1[j] > 0.00001)

 {

 itt++;

 if(CMIN1 > C[i][j])

 {

 CMIN1 = C[i][j];imin1 = i;jmin1=j;

 }

 }

 }

 if(itt > 1){

 for(j = 1;j <= NODEM; j++){

 if(D1[j] > 0.00001)

 if((j != jmin1) && (CMIN2 > C[i][j]))

CMIN2 = C[i][j];

 }

 }

 DIFFT = CMIN2 - CMIN1;

 if(itt == 1) DIFFT = 0;

 if(DIFF < DIFFT)

 {

 DIFF = DIFFT;MINI = imin1;MINJ

=jmin1;

 }

 }

 }

 for(j=1;j<=NODEM;j++)

 {

 if (D1[j] > 0.00001)

 {

 icom = 1; CMIN1 = 1E+20;imin1 = 0;jmin1 = 0;

CMIN2 = 1E+20; itt= 0;

 for(i=1;i<=NOSUP;i++){

 if(S1[i] > 0.00001)

 {

 itt++;

 if(CMIN1 > C[i][j])

 {

 CMIN1 = C[i][j];imin1 = i;jmin1=j;

 }

 }

 }

 if(itt > 1){

 for(i = 1;i <= NOSUP; i++){

 if(S1[i] > 0.00001)

 if((i != imin1) && (CMIN2 > C[i][j]))

CMIN2 = C[i][j];

 }

 }

 DIFFT = CMIN2 - CMIN1;

 if(itt == 1) DIFFT = 0;

 if(DIFF < DIFFT)

 {

 DIFF = DIFFT;MINI = imin1;MINJ

=jmin1;

 }

 }

 }

if (icom==1)

 {

 if(fabs(S1[MINI] - D1[MINJ])<0.00001)

 {

 FLOW[MINI][MINJ] = S1[MINI]; S1[MINI] = 0;

D1[MINJ] = 0;

 A++;

 }

 if((fabs(S1[MINI] - D1[MINJ])>=0.00001) && (S1[MINI]

< D1[MINJ]))

 {

 FLOW[MINI][MINJ] = S1[MINI];D1[MINJ]-=

S1[MINI];S1[MINI]=0;

 A++;

}

 if((fabs(S1[MINI] - D1[MINJ]) >= 0.00001) &&

(S1[MINI] > D1[MINJ]))

 {

 FLOW[MINI][MINJ] = D1[MINJ];S1[MINI]-=

D1[MINJ];D1[MINJ]=0;

 A++;

 }

 }

 }//while(A <= LB);

 // if(icom == 1) goto LB;

 if(icom == 0) return;

 }

 /*INISOL*/

 void INISOL()

Adeoye Akeem .O.et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,177-184

© 2010, IJARCS All Rights Reserved 182

 {

 int cnt;

 int BLINK,linet,ptr,p;

 int valid,char_count;

 int i,j;

 for(i=1;i<=NOSUP;i++)

 for(j=1;j<=NODEM;j++) EC[i][j] = 0;

 switch(INIT)

 {

 case 1: NWCR(); break;

 case 2: LCR(); break;

 case 3: VOGEL(); break;

 }

 TCOST = 0.0;

 for(i=1;i<=NOSUP;i++)

 for(j=1;j<= NODEM;j++)

 {

 if(FLOW[i][j] == 0) continue;

 EC[i][j] = 1; CT++;

 // TCOST = TCOST + CT++;

 TCOST = TCOST + (C[i][j] * FLOW[i][j]);

 }

 if(CT < CP) printf("\n The initial solution is

not feasiable.");

 else printf("\nThe initial solution is

feasiable.");

 }

void Optimal() {

//Labels: e10, e70, e140, e150

 int I,J;

 ITERATE = 1;

e10: XINFCC=0.0;

 for (I=1; I<=NOSUP; I++)

 for (J=1; J<=NODEM; J++) {

 if (FLOW[I][J] != 0.0) goto e70;

 Seek_Path(I,J);

 Increase(I,J);

e70:; }

 if (XINFCC>=0.0) {

 IOPTIMAL=1;

 goto e150;

 }

 for (I=1; I<=LT; I++) {

 IX=P[3][I]; IY=P[4][I];

 if (I % 2 == 0) {

 FLOW[IX][IY] -= TT;

 goto e140;

 }

 FLOW[IX][IY] += TT;

e140:;}

e150:if (IOPTIMAL==0) {

 ITERATE = ITERATE + 1;

 goto e10;}

}

void Seek_Path(int I, int J) {

//Labels: e70, e160, e260

 int I1,I2;

 for (I1=1; I1<=NOSUP; I1++)

 for (I2=1; I2<=NODEM; I2++)

 R[I1][I2]=FLOW[I1][I2];

 for (I1=1; I1<=NOSUP; I1++) R[I1][0]=0.0;

 for (I2=1; I2<=NODEM; I2++) R[0][I2]=0.0;

 R[I][J]=1.0;

e70: for (I2=1; I2<=NODEM; I2++) {

 if (R[0][I2]==1.0) goto e160;

 NR=0;

 for (I1=1; I1<=NOSUP; I1++)

 if (R[I1][I2] != 0.0) NR++;

 if (NR!=1) goto e160;

 for (I1=1; I1<=NOSUP; I1++) R[I1][I2]=0.0;

 R[0][I2]=1.0; IF1=1;

e160:;}

 for (I1=1; I1<=NOSUP; I1++) {

 if (R[I1][0]==1.0) goto e260;

 NR=0;

 for (I2=1; I2<=NODEM; I2++)

 if (R[I1][I2] != 0.0) NR++;

 if (NR!=1) goto e260;

 for (I2=1; I2<=NODEM; I2++) R[I1][I2]=0.0;

 R[I1][0]=1.0; IF1=1;

e260:;}

 if (IF1==1) {

 IF1=0; goto e70;

 }

}

void Increase(int I, int J) {

//Labels: e20,e70,e130,e170,e180,e230

 int I1,I2;

 P[1][1]=I; P[2][1]=J; IX=I; IY=J; ID=1; CC=0.0;

QT=999999.0;

e20: ID++; IF1=0;

 for (I1=1; I1<=NOSUP; I1++) {

 if (R[I1][IY]==0.0 || I1==IX) goto e70;

 P[1][ID]=I1; P[2][ID]=IY; IX=I1; CC -= C[IX][IY];

 IF1=1; I1=NOSUP;

 if (FLOW[IX][IY] < QT && FLOW[IX][IY] > 0.0)

QT=FLOW[IX][IY];

e70:;}

 if (IF1==0) goto e170;

 ID++; IF1=0;

 for (I2=1; I2<=NODEM; I2++) {

 if (R[IX][I2]==0.0 || I2==IY) goto e130;

 P[1][ID]=IX; P[2][ID]=I2; IY=I2; CC += C[IX][IY];

 IF1=1; I2=NODEM;

e130:;}

 if (IF1==0) goto e170;

 if (IX!=I || IY!=J) goto e20;

 goto e180;

e170:printf(" DEGENERATE SOLUTION !\n");

 return;

e180:if (CC>0.0 || CC>XINFCC) goto e230;

 TT=QT; XINFCC=CC; ID--; LT=ID;

 for (I1=1; I1<=ID; I1++) {

 P[3][I1]=P[1][I1]; P[4][I1]=P[2][I1];

 }

e230:;}

 void TCost() {

 int I,J;

 CT2=0.0;

 for (I=1; I<=NOSUP; I++)

 for (J=1; J<=NODEM; J++) {

 CT2 = CT2 + (FLOW[I][J] * C[I][J]);

 if (FLOW[I][J]==0.0) goto e10;

Adeoye Akeem .O.et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,177-184

© 2010, IJARCS All Rights Reserved 183

 printf(" FROM SOURCE%d TO

DESTINATION%d: %8.2f\n", I, J, FLOW[I][J]);

e10:;}

 printf("\n TOTAL TRANSPORT COST: %10.1f\n\n",

CT2);

}

 /*main*/

int main()

{

 int i,j,menu10;

 char AB;

 int DATAOPT;

 menu10:

 TCOST = 0;

 //do

 //{

 INPUT_MODE();

 CP = NOSUP + NODEM - 1; CT =0;

 BALANCE();

 INISOL();

 printf("\n\n");

 if(INIT == 1) printf(" INITIAL FEASIABLE

SOLUTION OF NWCR\n\n");

 if(INIT == 2) printf(" INITIAL FEASIABLE

SOLUTION OF LCR\n\n");

 if(INIT == 3) printf(" INITIAL FEASIABLE

SOLUTION OF VOGEL\n\n");

 for(i=1;i<=NOSUP;i++){

 for(j=1;j<= NODEM;j++)

 {

 printf("%f",FLOW[i][j]);

 printf(" ");

 }

 printf("\n");

 }

 printf("Total cost = %f\n\n",(TCOST));

 if(INIT==1) printf("OPTIMAL SOLUTION OF

NORTH WEST CORNER RULE\n\n");

 if(INIT==2) printf("OPTIMAL SOLUTION OF

LEAST COST RULE\n\n");

 if(INIT==3) printf("OPTIMAL SOLUTION OF

VOGEL APPROXIMATION\n\n");

 Optimal();

 TCost();

 printf("\n\n NUMBER OF ITERATION =

%d\n\n", ITERATE);

 printf("PRESS 1 TO GO TO MENU? ");

 scanf("%d",&DATAOPT);

 if(DATAOPT == 1) goto menu10;

 // }while((DATAOPT == 'M') || (DATAOPT ==

'm'));

 system("PAUSE");

 return 0;

}

VII. APPLICATION

Table 1:- Shows the sources and supply capacity of Seven Up Bottling

Company

Sources Supply Capacity

Plant 1 3,200

Plant 2 3,080

Plant 3 2,720

Total 9000

Table.2 Shows the destinations and their requirement of Seven Up
Bottling Company PLC Ilorin.

Destination Demand

Jebba 1,320

Kabba 1,1720

Ogbomosho 2,520

Ekiti 1,240

Oshogbo 2,200

Total 9000

Table 3 Shows the unit cost of transportation in Naira (N) from sources

to destinations.

Sources Jebba Kabba Ogbomosho Ekiti Oshogo

Plant 1 150 165 150 145 100

Plant 2 148 162 172 127 160

Plant 3 220 228 170 160 155

Plant 1 = Warehouse 1 = W1

Plant 2 = Warehouse 2 = W2

Plant 3 = Warehouse 3 = W3

Jebba = Market 1 = M1

Kabba = Market 2 = M2

Ogbomosho= Market 3 = M3

Ekiti = Market 4 = M4

Oshogbo= Market 5 = M5

Table 4 Shows the combined cost matrix, supply capacity and demand

 M1 M2 M3 M4 M5 Si

W1 150

165

150

145

100

3,200

W2 148

162

172

127

160

3080

W3 220

228

170

160

155

2,720

dj 1,320 1,720 2,520 2,200 9000

VIII. ANALYSIS OF DATA

When the program developed was used to analyse the

data, the following result were obtained.

From the analysis of the data set, using the progam

developed in this study North West Corner Rule was

optimal at sixth iteration, Least Cost Rule at fourth iteration

while Vogel Approximation method is optimal at second

iteration. This indicate that Vogel Approximation Method is

the best

IX. SUMMARY OF FINDING

Summary of the analysis carried out so far are presented

in the table 11
 Methods

(Programing)

Initial

Feasible

Solution

Optimal

Solution

No of

Iteration

1. North West Corner
Rule

N1,427,360 N1,288,480 6

2. Least Cost Rule N1,339,080 N1,288,480 4

3. Vogel

Approximation

N1,295,080 N1,288,480 2

Adeoye Akeem .O.et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,177-184

© 2010, IJARCS All Rights Reserved 184

X. CONCLUSION

Since program developed on Vogel Approximation has

the advantages of obtaining initial feasible solution; easy to

compute and easy to edit when error are committed in the

process of data entering. Hence programming developed on

Vogel Approximation Method using C++ is the best method

of getting Approximate solution to transportation problem

and best method of distributing the goods and services.

XI. REFERENCES

[1]. Abel Mizahr and Michael Sillivant (1979): Mathematics for

Business and Social Sciences Published by John Willey &

Sons Inc.

[2]. Aminu Y.A (1998): Operation Research, for Science and

Management Studies, Best Way Publisher Ltd. Offa.

[3]. R.J Vanderbei, Linear Programming: Foundations and

Extensions, Kluwer Academic Publishers, Boston, 1996.

[4]. S.J. Wright, Primal-Dual Interior-Point Methods, Society for

Industrial and Applied Mathematics, Philadelphia, 1997.

[5]. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein 2001 Introduction to Algorithms, Second

Edition. MIT Press and McGraw-Hill.

[6]. Michael. J. Todd (February 2002). “The many facets of

linear programming” Mathematical Programming 91 (3).(3).

