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Abstract: This paper is organized as follows: Firstly, it presents related literature on the current topics related to online social media networks 

(OSMNs) and the latest works, which define the social networks. Secondly, it introduces the important traits depicted by the most of the Online 

Social Media Networks. After that we are describing some generative models to represent OSMNs. Lastly, we have tried to analyze aspects in 

which OSMNs can fit as well as the areas where it fails.  
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I. INTRODUCTION 

Social Network Analysis (SNA), a novel branch of 

computer Social Sciences, which is actually used to study 

large and complex OSMNs. Studying such online networks, 

can be useful to compare and analyze the differences and 

similarities with real-life networks. SNA not only defines 

the some interesting aspects, but also provides the various 

techniques to introspect the OSMNs, either from a 

qualitative or a quantitative perspective (e.g. properties like 

Diameter, Navigability and Degree Distributions etc.). In 

this paper, we have tried to focus on the graph structure 

which represents OSMNs, for that we consider specific 

characteristics and metrics such as diameter, degree 

Distributions and community structure are the topological 

measures for defining networks. 

II. BACKGROUND AND RELATED WORK 

Summarized below are some of the latest trends in the 

social network analysis (SNA): 

a) Few Researchers [1, 7] had done analysis on OSMNs 

by using link symmetries, degree distributions, group 

formations, cluster coefficients etc. 

b) Kumar et al. [4], proposed the framework which 

depicts the structure of OSMNs, moreover with proper 

validations with actual data. On the same notion, 

Leskovec et al. [5] tried to explain the dynamic and 

structural properties of the large-scale OSMNs which 

further affect the online communities. 

c) Mining large and complex social graphs with infinite 

number of nodes and edges gave birth to Graph 

mining techniques. Some authors [2, 5] discovered 

Metropolis-Hastings and Random Walks algorithms 

having better performance for, both static and dynamic 

graphs.  

d) Some researchers [3, 6] try to figure out those features 

of the social networks that could predict what nodes 

are more probably to be connected by trusted 

relationships, which is called as Link Prediction (LP) 

problem. 

All about the OSMNs models literature is a part of 

social sciences. One of the major development in the field of 

study of OSMNs came from the researcher Stsnley 

Miligram  in the 1960’s [8, 9], his goal was to detect the 

average  length of the shortest-path of friends between a pair 

of people. He actually analyzed the characteristics of real-

life OSMNs by performing number of experiments and 

finally proposing the term “small-world” phenomena.  Later 

on researchers think that Miligram’s results are intuitive and 

obvious and were able to replicate experiment on a smaller 

scale across a university campus, or within a single ethnic 

community in a city using similar methods [10,11,12,13,14], 

and a recent larger-scale small-world experiment conducted 

via email has shown similar results [15].  

III. FEATURES OF ONLINE SOCIAL MEDIA 

NETWORKS 

In this section, we have done a brief survey of some 

important properties of OSMNs that have been extensively 

used in the social network models and for the ease of 

reference. Mathematically in graph-theoretic terminology, 

an OSMN is just represents a simple graph (V, E), where all 

nodes (or vertex, actor, site) in network depicts people, and 

an edge (or arc, tie bond) (i, j) belongs to E, denotes some 

kind of social relationship between the people i and j. The 

key features that characterize social networks. i.e. i) defining 

“small-world” with Diameter and Navigability effect (SW-

DN), ii) Clustering Coefficient (CC) and lastly iii) Degree 

Distributions (DD). 

The other properties which we observed in real world 

OSMNs are a) Giant Component (GC )(related to the size of 

the social network’s connected components and it includes 

almost all the nodes in the network i.e. there exists a path 

between most pairs of nodes), b) Assortative mining  (AM) 

(which define the degree of correlations among the nodes 

which are neighbors’) and lastly c) layout or community 

structure (CS) in OSMns. In [16] Newman and Park, 

discussed that AM and CS are the important statistical 

properties for the OSMNs. 

A. “Small-world” Phenomena with Diameter and 

Navigation Effect (SW-DN): 

According to this, most of the people in the real world 

networks are connected via short paths or chains of 

intermediate or neighbors friends or in terms of graph theory, 
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there exists a relatively short path connecting any pair of 

nodes within the social network. In fact, technically, a 

“small-world” network is defined as a graph in which most 

of the nodes are not reciprocal neighbors to each other, and 

could be reached from every node by a few number of hops.  

The diameter D, that represents the so called “small-world” 

phenomena, directly proportional to the logarithm of the 

length of the network which is reflected as 

      D     

  Where ardinality of V 

      

                D    Diameter  

Milgram’s historically proved with the help of his 

experimentation that the: random graphs have small 

diameter. It yet not completely clear that OSMNs have a 

small diameter in term of longest shortest path in the graph 

theory. Unfortunately, the research on social networks often 

use the word “diameter” in reference to four measurable 

quantities i) the longest shortest-path which reflects the 

trueness of diameter in graph theory but un-measurable in 

disconnected OSMNs, ii) the longest-shortest path between 

connected vertexes or nodes, which is measurable in length, 

iii) the average shortest-path length, and iv) the average 

shortest-path length between connected nodes.  In [17,18], 

Albert et.al and Border et.al stated that most of the other 

intriguing networks have shown average shortest-path 

length, for which the average (directed) shortest-path length 

was calculated to be less than twenty and it is partially 

related to the OSMNs 

Another characteristic noted in OSMNs is that they are 

navigable small worlds: not only pairs of people are 

connected by short paths but also using local and global 

information for e.g. topological or geographical information. 

Watts, Dodds and Newman [19] defined that navigation is 

possible based on the multiple communities like hobbies, 

location, occupation, etc.) into which  people fall and a 

algorithm that follows greedy approach  and try to attempts 

to get nearer to the target node from any  random dimension. 

This model in terms of simulations has shown the navigation 

in the social networks, but theoretically no proof  have been 

established. 

B. Clustering Coefficient (CC): 

In terms of quantitatively, the CC of the OSMNs is a 

measure of the probability that two nodes or people who 

have a common intermediate friend will themselves be 

friends- or, in graph theory, the number of triangles in the 

graph that are “closed” . One of the drawbacks of the 

random –graph of social networks is the CC, which is much 

than the prediction value in a random graph G (V, E). The 

CC for a vertex or node v  V of a random graph G (V, E) is 

CC=        

It implies that the number of edges that exist within the 

neighborhood T (v) of v, i.e., between two nodes adjacent to 

u. The CC of the full network is the average CC taken over 

all nodes in the graph. Mostly networks have CC in the 

range of 10
-1 

which is orders of magnitude greater than the 

CC that a random graph G (n, p) would exhibit when the 

link probability p is set in a reasonable range to approximate 

the sparsity of these networks [20]. In other words, G (n, p), 

the probability of the existence of the edge  ( i ,j) ( where i 

and j represents a pair of people) is independent of the graph 

distance i.e. an edge between  i and j is highly negatively 

correlated with graph distance. This shows that the 

correlation captures the notion that the people separated by a 

smaller social distance are more likely to be friends. 

C. Degree Distribution (DD)- Scale Free Distribution: 

Many network models reflect the important feature i.e. 

degree of distribution (DD) of network- it means the layout 

the nodes in the social network are interconnected. In a 

random graph, the DD is the proportion of nodes in the 

network that have a particular degree k (i.e. the number of 

people with exactly k friends). In a typical social network,, 

the proportion P(k) of nodes with degree at least k is 

reasonably well approximated by the power-law distribution  

P (k)= k
-β    

           For a constant β > 0 (β ≈ 2.1-2.5) 

Models based on power-law degree distribution are 

referred as scale-free networks because they depict the node 

degree distributions (DD) of large and complex social 

networks. Since these power laws are free of any 

characteristic scale, such a online network with a power law 

degree distribution is known as scale-free network [21].
 

IV. SOCIAL NETWORKS AND MODELS 

Properties like the shortest average length, the 

correlation or CC and the degree of distribution (DD) have 

been applied to rigorously to model the OSMNs. Many 

researchers have presented different models, but in this 

paper we focus on the three most widely accepted modeling 

paradigms :i) The Erdos-Renyi Model- Random Graphs, ii) 

“Small-World" social networks and, iii) power law degree 

distribution networks. Because of the ease of adoption the 

Erdos-Renyi model which represents random graphs, are 

widely used in several experimental studies. After the 

discovery of the clustering of coefficient i.e.CC effect, a 

new set of models, namely “small-world" networks, has 

been introduced. Similarly, the power law degree 

distribution produced from real-world OSMN led to the 

modeling of the homophily in social networks, which are 

adapted to explain the scale-free behaviors of the networks. 

This is to concentrate on the dynamics of the social network, 

to describe the phenomena such as the power laws and other 

non-Poisson degree distributions.  

Before we discuss specific models that might explain 

the small-world phenomenon, we note that real social 

networks are dense graphs. Generally it has been found [22] 

that on an average, a person has an approximate at most a 

thousand friends , therefore  a realistic or theoretic  model 

cannot  be used on  a sparse graph to explain the small world 

phenomena. 

A. Erdos and Renyi: Random Graphs: 

The first models of network, the random graph, was 

given by Erdos and Renyi [23]. They both proposed two 

models for the networks: i) the simple one consists of a 

graph containing n vertices which are connected randomly 

and ii) the generally used model, indeed, is defined as a 

graph G n, p in which each existing edge between two 

vertices may be included in the graph network with the 

probability p (and may not be included with the probability 

(1 - p)). Erdos and Renyi represented the standard random-

graph model by G (n, p) in which a set of nodes n and, for 

each of the  pairs of nodes in the graph, adding an edge 

connecting them independently at random with some 

predefined probability p.   
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The following are the characteristics of this model: 

a. As random graphs have small diameters, so it is easy 

to work upon them 

b. They do not properly simulate the exact structure of 

real-world large scale complex networks, because of 

two reasons I) the DD (degree of distribution) follows 

the Poisson Law, which partially differs from the 

power law distribution of random networks proved by 

statistical or empirical data, II) these do not depict the 

CC (clustering Coefficient) effect, taking into account 

that all the nodes of the graph is associated with equal 

weight and therefore reducing the effect of the 

property i.e. Giant Component (which consider the 

network to be giant cluster). 

c. This model  is not good and unfeasible to be used in 

current studies because of the very low probability, 

higher CC of a random graph which have tendency 

towards  homophily ( all nodes have relatively similar 

features).

                   

Figure 1: Random graph with a fixed-outdegree variant of the G (n, p) model of Erdos and Renyi.and degree of distribution (DD) is linear. Ucinet [32] 

B. Newman-Watts-Strogatz: The Rewired Ring Lattice: 

Like -wise random graphs most of the real-world 

OSMNs are very well connected , sparse and have shortest 

average diameter length, but they also have exceptionally 

large CC (clustering coefficients), a feature that is ignored 

by above mention Erdos-Renyi Model. Its role is crucial in 

the study of “small-world” phenomena. This network model 

as follows: 

a) It is grid architecture model in which n-people were 

placed on a k-dimensional grid where k=1, but this 

model can be applied to higher dimensions as well 

where each person i in the grid can connect to all other 

people within the threshold Manhatttan distance >1, 

considering the fact that all others people are “local 

neighbors’ of the person u in the network [24].    

b) In this model for each edge (i,j) in the graph is having 

some probability p, is randomly “rewire” to some 

other edge to become (i,j`), where j` is selected 

uniformly and randomly from all the possible set of 

nodes in the network . 

c) In random graphs we have high CC i.e. p=0, that 

means for any two local neighbors i and j, almost all 

the nodes in the network are at closer proximity with i 

as well as with j. As population size is in the 

polynomial , so we have high length diameter because 

left out edges in the graph are local links that cover the 

distance  θ(1) in the grid [26]. 

d) If p ≈ 1, we have small diameter and low CC as in case 

of random graph, therefore similar to G (n, p) random 

graph. 

e) This model depicts the best of two worlds, by having  

possible intermediate values for  rewiring  probability 

(p) that that have high CC and low diameter length. 

The high CC exists because rewiring probability p is 

small due to local links in the network remain 

unchanged. 

 

                     

(a)  The trivial rewiring probability    (b) An intermediate rewiring prob-   (c) The trivial rewiring probability p = 0, in which each node is con-ability p = 0:1, 

where most edge p = 1, in which each edge connects nected to its nearest neighbors. still connect nearby neighbors, but each node to a node chosen uni-a small 
fraction connect points to fomly at random. randomly chosen nodes. 
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Figure 2:  The Watts/Strogatz social-network model of 

a randomly rewired ring lattice. A circle is formed of n 

people, each of whom is connected to the θ(1) nearest 

neighbors in each direction. Then, with some probability p, 

each edge is “rewired" by replacing one of the edge's 

endpoints with a connection to a node chosen uniformly at 

random from the entire network [26].  

Such type of models extensively been used sin the 

mathematics and computer science, in which  graph is an n-

node cycle  and by random matching diameter of a network 

has been θ (log n) with probability tends to one as n nodes 

approaches to infinity [25].  

C. Kleinberg: A Navigable Small World: 

Milgram in his experiment missed out some observation 

which Kleinberg [28, 29] had noticed in the modeling of 

OSMNs. Milgram’s shows the world two things in OSMNs: 

i) short links exists between random pairs of a network, and 

ii) clients or people in the network themselves able to fetch 

or design short path by using only “local” information about 

their own neighbor’s or friends. Kleinberg instead of taking 

length of diameter of network, he analyzed the result by 

rating the success of a specific type of routing alogorithm 

when it is actually fired on the graph. This model can be 

explained as below: 

a) He used local-information routing algorithm-that 

already knows the topology of the graph no rewiring 

done-needed to do number of polynomial steps. 

b) It is an extension of Watts-Strogatz model, having a 

network with  n-dimensional mesh of people, in which 

each person have the local information about his 

topological neighbors’ in random direction and the 

probability Pr Pr [i →j] α d ( i, j)
-β 

     where  i and j is 

linking nodes  

   β ≥ 0 ( some constant) 

   d(i,j) ~ Manhattan distance 

c) This model was the improvised version (adding edge) 

of Watts-Strogatz model, in which new edges were 

added with probability p with β=0. 

d) Kleinberg’s local information routing algorithm was 

based on greedy approach, can able to construct Short  

average paths between people in the graph. 

e) Kleinberg’s theorem says if β=k, then local 

information greedy algorithm will find the path of 

length O(log2n) with high probability and if β≠ k, then 

length will be Ώ (nε) for some constant ε >0 with high 

probability. 

This model holds positive results only for one single 

long-range link that to be chosen for every node in the 

network and goes negative for any other constant number of 

long-range links.  Kleinberg (27) analyzed the “small-

world" effect from an algorithmic perspective, providing 

important algorithms to compute metrics on graphs 

representing social networks, the so called social graphs. 

 

                               

Figure 3: The Kleinberg social-network model. Starting with a k-dimensional mesh (here k = 2), we connect each node to its nearest neighbor in each cardinal 
direction. Then, for each node u, we select a long-range link probabilistically, where the probability that i's long-range link is j is proportional to d (i, j)-β, for a 

parameter β ≥ 0, where d (i, j) denotes the Manhattan distance between i and j. In the figure, the long-range links are shown for two of the nodes, along with 

dashed diamonds that show the distances to all nodes at least as close to the source as the randomly selected long-range link. Darker shading indicates a higher 
probability of a link [27]. 

D. The Barabasi-Albert -Preferential Attachment 

Model: 

The above discussed models only incorporate the 

properties of the OSMNs which they observed from real-

world networks but none of them discussed about the origin 

and evolution of these properties. They both recommended 

the two main aspects of the self-organized scale-free 

network are i) expansion ii) prefential attachment. Mostly 

real-world networks kept on growing continuously by 

adding new nodes which are attached preferentially to the 

previous or existing connected nodes in the dense or sparse 

network. This dynamic scale-free network model discuss 

below:  

a) This model gives another way of generating a power-

law degree distribution simply means that in a network 

each node u, one can simply generate “stub” half 

number of edges (in each edge u is fixed) by selecting 

a degree d(u) given by power-law degree distribution 

and then randomly  connecting the final or stub edges 

to produce the network [30,31,32,33]. 

b) Barabasi-Albert [23], proposed at every time frame t, a 

new node or person ut is added to a network with a 

exactly one edge. The neighbor’s of ut has a 

probability P[ut →v] α d(v). 

Through simulation it is proved that that this model 

produce a power –law degree distribution and also a prrof 

that preferential attachment generated a network with θ (log 

n) diameter ( and θ (log n/log log n) if a constant c > 1,as 

number of edges equal to the number of new nodes are 

added in the network).   
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Figure 4: The preferential-attachment model of Barabasi and Albert with degree of distribution plot is log/log and also average outdegree variant. Ucinet [32] 

V. CONCLUSION AND FUTURE WORK 

In this paper we tried connect the real-world networks 

mechanics with the theoretical modeling of small-world 

phenomena observations both empirically and analytically 

and also tried to portrait a summarized picture of mostly 

used OSMNs models which represent the important 

characteristics of the real-world networks. We have 

discussed some of the previous research done on the 

OSMNs and also stated some the terminology and 

topological features that are important to the real-world 

network. Stanley Milgram’s suggested the small-world 

problem, but there is a disconnection between mathematical 

proposed models and real-world mechanics or experiments. 

Several network models have being exploited i.e. i) Erdos-

Renyi-Random graphs model, ii) Watt-Strogatz, iii) 

Kleinberg Model, iv) Barabasi-Albert-preferential 

attachment model. We observed that number of empirical 

and mathematical models have been recommended with 

their potential explanation, but none of the proposed models 

have shown the topological features that could be matched 

with real-world networks. While studying these models we 

analyze that none of them represent all the crucial features 

of the OSMNs which are namely i) “small-world” 

phenomena, ii) degree of distribution (DD), iii) clustering of 

coefficient (CC), and lastly iv) detection of Community 

structure. We have found out that the Kleinberg’s result 

doesn’t explain the small-world phenomena properly and 

also people doesn’t have friendships network according the 

power-law degree distribution model. Because OSMNs are 

highly dynamic structures, they grow rapidly and changed 

quickly through the addition of new edges which 

significantly means appearance of new friendships or 

interactions in the underlying network compel us to 

understand the mechanisms by which they evolve is a 

fundamental research question that is still not well 

understood and it forms the motivation for the work to be 

done.  

In future, we will try to do three things firstly, by 

providing a new explanation of the small-world phenomena, 

either by proposing a new model or framework by using 

local or global geographic information or by detecting 

community structure that will support both empirically and 

theoretically to our real-small world. Secondly, as OSMNs 

are evolving using variety of graph-theoretic techniques of 

the existing friendships networks to predict new interactions 

more accurately rather than by guessing random. Thirdly, 

with the help of computational theoretical models, we will 

try to infer social connections in a network, attempting to 

extract a social network via observation of the topics of 

conversation by the members of the network, and thereby 

inferring flow of Information through the network. 
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