
Volume 6, No. 1, Jan-Feb 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 98

ISSN No. 0976-5697

An Extension to Android Security Framework

R M. Sherkar
Mtech [Student], Computer Science and Engg.

Government College Of Engineering Amravati

Amravati, India

Prof. R V. Mante

Assistant Professor, Computer Science and Engg.

Government College Of Engineering Amravati

Amravati, India

Dr. P N. Chatur
Head of Dept., Computer Science and Engg.

Government College Of Engineering Amravati

Amravati, India

Abstract: Android is an open source mobile operating system developed by Google popular mobile-device platform developed by Google. It

allows the application to share their data and code with another application. However, these sharing can be tightly controlled by permission

given in the manifest file of Android. Overall, user can’t predict what the application can do with their data. Hence, this assignment describes the

framework which is helpful in providing security to data that’s present on android devices. It provides not only internal security but also

externally by using AES encryption algorithm so that unauthorized party can’t read the user’s personal/private data.

Keywords: isolation; AES encryption; context; taint; android-platform.

I. INTRODUCTION

In this new era, the use of smartphone has been

increasing very rapidly and android operating system which

is an open source platform has become very popular. As

given by [ASEC], in Q3 2011, 52.5% of all devices sold

were Android devices, followed by Symbian (16.9%) and

Apple’s iOS (15.0%), according to Gartner analysis.

Now-a-days the use of smartphone in private and

corporate sector has been increasing very rapidly because of

this security of data is greatly essential. Smartphone can be

used for doing net banking, shopping, money transfer,

sharing corporate files. Because of these factors android

based smartphones become a very attractive target for

malicious and unauthorized users. Up till now android

operating system security model is successful in preventing

the attacks from malware. Also an extension to this is an

anti-theft concept which is described in further sections.

A. An Overview to Android:

From the above discussion, android operating system

becomes popular hence pre-installed on all smartphones

which is currently being sold out in order to meet different

requirement than personal PCs and server related operating

system that to in security and functionality.

Now coming to its structure, Android operating system

is responsible for implementing a complete set of software

i.e. the stack of software for running mobile applications.

Bottom most layer is Linux kernel layer having networking,

power management, memory management and device

drivers. Next part of Android is having some local libraries

for database management, graphics and the functionality of

web browser that can be shrieked out through the interfaces

employed in Java. Furthermore, Android entails of basic

Java archives, and a computer-generated machine for

running source bytecode called as “.dex” which is derived

from JVML bytecode. Upper layer of this is the application

framework level, which acts as an intellectual machine for

applications. Finally, the last layer i.e. top most layer

contains code for applications, which is prepared in Java

with an interface given by an SDK [1].

Now moving towards Android’s application model,

concentrating on how applications are prepared and run on

mobile device in detail.

a. Activities: It provides interface so that user can

interact with the application in a convenient way. For

example, consider “hike” application in which user

can do messages through one activity while can

provide attachments including photos, files, contacts,

locations, etc. through a different activity. Though,

these activities can work in an organized manner in

order to provide organized structure and each one is

executing in its own address space. Moreover,

another app such as camera which can start activity in

order to provide or share pictures to users.

b. Service: It is one of the component of Android app

model which can run in the background without

interrupting with others and can perform work for

remote procedures. It doesn’t provide any interface

for user to interact because it is running in the

background of app. For example, a service can play

music in the background whereas user is working on

another application.

c. Content Providers: This one is responsible for

storing and sharing application’s data. You can store

data in the file system which is accessed by app. With

the help of it, user can query and modify data. For

example, on “whatsapp” application allow user to

store or update contact address book which is not

present in the contacts but received message from it

on the application.

R M. Sherkar et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,98-101

© 2015-19, IJARCS All Rights Reserved 99

d. Broadcast Receiver: Broadcast receiver is

responsible for displaying messages whenever events

of applications starts up such as when system boots

up, battery charging, etc.

Above three components [2], of Android application

model excluding content provider component are activated

by a message called as Intent which is responsible for

linking applications. Android mobile applications using this

intent for doing both intra-application and inter-application

communication. In general terms, Intents are nothing but the

messages that do communications between the components

of Android application model.

For the components like activities and services, an

intent outlines the event for performance. For example, to

“send” a file or “display” something. For broadcast

receivers, the intent provides the statement that is being

broadcasted. There are two types of Intent:

a. Explicit intents state the component name in order to

start it. Explicit intent is used to start a component in

the particular app or service you want to start. For

example, start a novel activity in answer to a user

action or start a service to play a song in the

background.

b. Implicit intents do not label a precise component,

however in its place state an overall act to accomplish,

which lets a module from different app to hold it. For

example, suppose user wants to provide a location on a

map, he/she can use an implicit intent to demand that a

different skilled app display an identified location on a

map.

II. EXISTING SECURITY ON ANDROID

Android is an open source Linux-based operating system

which is automated using Java besides this executed in its

own address space. Android pools operating system skins

like multi-tasking of processes, memory management, Unix

user identifiers (UIDs) for each of its procedure in

implementation plus file authorizations through the type-safe

features of Java and its application programmable interface

libraries. However, the resultant security outline is like a

multi-handled server. Dissimilar to a personal computer

operating system where all user applications shares the same

UID given by Linux Kernel level, applications on Android

are discretely subdivided from each other. Applications on

Android platform are having different UID with distinct

permission set provided by Android. Each and every process

is restricted to tamper with other files or data plus sharing of

such files or data can be done explicitly with the help of

programmer/user [3].

The Android permission based model is a

straightforward way for providing security in order to access

various resources or data that are available on Android. Even

though permission given to applications on Android are

classified to distinct security stages like Regular, Unsafe,

Signature and SOS (Signature-Or-System), however,

consignment of these security stages to various data or

resources is depend on developer’s ability and their own

understanding. Because of this, Android security faces

several security related problem from malicious application

and from some of the legitimate applications. Android

platform allow user to download application from Google

Playstore and install it. While doing so, user will get a dialog

box contains list of permissions, which he/she has to accept

all to install the app successfully or can deny it for cancelling

installation process. Basically, there are a digit of security

issues in this: 1) The user has to accept all permissions and

grant them in order to carry on installation process

successfully, 2) once the installation and granting of

permission is done; there is no way for revoking the

permissions that are already granted at the installation time 3)

in between there is no way of restricting the application for

accessing the data or resources, 4) the permissions that are

granted at installation time can be reverted back by

uninstalling it [4].

Technically speaking, Android combines two levels of

enforcement [5], [6]: at the Linux kernel level and the

application framework level. At the Linux kernel level

Android is a multi-process system. During installation, an

application is assigned with a unique Linux user identifier

(UID) and a group identifier (GID). Thus, in the Android OS

each application is executed as a different user process within

its own isolated address space. All files in the memory of a

device are also subject to Linux access control. On a Linux,

file access permissions are set for three types of users: the

owner of the file, the users who are in the same group with

the owner of the file and all other users. For each type a tuple

of read, write and execute (r-w-x) permissions is assigned. In

Android, by default, the files in the user’s home directory can

be read, written and executed by the owner and the users

from the same group as the owner. All other users cannot

work with these files. So as different applications by default

have different user identifiers files created by one application

cannot be accessed by another.

At the application framework level, Android provides

access control through the inter-component communication

(ICC) reference monitor. The reference monitor provides

mandatory access control (MAC) enforcement on how

applications access the components. In the simplest form,

protected features are assigned with unique security labels—

permissions. Protected features may include protected

application components and system services (e.g.,

Bluetooth). To make the use of protected features, the

developer of an application must declare the required

permissions in its package manifest file:

AndroidManifest.xml [7].

A. Present Security Apps:

Android operating provides internal security to data

present on the device having it but rather many people wish

to download and install various security apps for extra

protection. However, Google Playstore consist of number of

application including these types of apps. All such type of

applications are generated at Application level framework

and each has their own pros and cons. Some of these apps

are given below.

a. File cover

b. APP Lock

c. Smart App protector

d. Gallery private

e. Gallery pro lock

f. Free data vault

a. Advantages :

a) Safety: When you start using such apps you will feel

protected getting that your files or data are properly

protected and secure from unauthorized party plus no

one can see what you don’t want to show them.

R M. Sherkar et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,98-101

© 2015-19, IJARCS All Rights Reserved 100

b) Easy To Use: These applications are easy to handle

and can install easily because of familiar GUI.

c) Free of cost: Near about 1000+ apps are present at

Google Playstore however many of them are freely

available that can be easily downloaded.

b. Disadvantages:

a) Locks: Once you start using these applications you

will have to wait for a while in order to view the

content of files/folder.

b) Passwords: By using password mechanism, every time

user has to type it in order to unlock the folder/file.

III. RELATED REVIEW

First, This paragraph describes the previous work in this

field. Following sections provides research in order to

enhance the security of the Android operating system

environment.

A. Extension to Android security:

Number of solutions are given by the researchers in

order to improve the security of Android platform. We have

giving some of these that are related to our proposed work.

As everyone know that, while installing application on

Android platform, user has to grant all permissions that are

requested in the manifest file. The platform supports all-or-

nothing approach i.e. user has to grant all permissions for

installation or else deny the installation. Again, user cannot

revoke the permissions given at installation time while

running particular app. To solve this problem, some solutions

are given.

Apex [8], while installing the applications, it provides

such a mechanism that user can change the permissions to an

application at installation time, meaning that user has a

provision to change permission given in the Android

manifest file. Semantically Rich Application Centric Security

in Android [9], provides the framework that gives the

enhancement to existing Android security. It provides

installation time rules that adjust the assignment of the

permissions in order to protect their API. Also it controls

how applications interacts with each other. Crepe [10],

provides the mechanism so that user can create their own

special rules i.e. policies that can control the granting of

permissions in the manifest file automatically during the

installation time.

According to some research, [11], [12] concentration is

given on private data only. MockDroid [11], is a framework

which provides mock data i.e. false data when applications

are trying to access the data without having that access

through the unbound network. Also, according to TISSA

[12], when the app is trying to read the data, it first send

request to content provider and checks the current security

settings related to the app. If the reading operation is allowed

then and then only app can access the data in other cases it is

denied. Taindroid [13], the system assigns taint i.e. label to

each and every predefined data and controls the access of the

app. When app is trying to access the data through unbound

network connections at that time it notifies the user about this

happening and label the application name.

AppFence [14], it shows the shadow data when the app

trying to access the data unauthorizingly and block the access

of that application. Context plays a very vital to enhance the

security of Android, in [8], [10], context provides security

rules at run-time. The framework given in [15], [16], shows

the usage of context in order to limit access to data.

B. Security Profile:

According to Moses [7], it provides isolation by keeping

application and data related to work separated from

recreational app and personal/private data. Within the same

device, such environment can run in its own address space.

Meaning that, application and data belongs to entertainment

are not able to access the data related to corporate sector.

Here, security environments are associated with one or more

context that determined activation/deactivation of security

profile (environment).

Context are nothing but the Boolean expression that is

defined over any information obtained from smartphone’s

logical or physical sensors like GPS, mobile data, Wi-Fi.

When this value becomes true, then security profile

associated with one or more context becomes activated. But

it may happen that one or more profile becomes activated at

the same time. To solve this conflict each security profile

assigns with a priority. Profile having higher priority is

activated first than a profile having lower priority. If profile

is having same priority at this moment, the profile which is

activated first remains in a working condition.

User can dynamically switched between these profiles

with the help of MOSES GUI. Each profile is associated with

the password so that no one can tamper with the data.

IV. PROPOSED WORK

As given in the MOSES [7], separate environments are

given so that unauthorized user can’t tamper the data. But all

this research provides internal security to the data but what

about the external security when the cell phone get stolen.

Now-a-days, smartphone has no value but the data which is

present on the device has great importance. Now question

arises how to secure or get the data back when the phone get

stolen. One secure way is to apply pattern/pin locks in such a

way that unauthorized party can’t crack it. This one is the

more general way to provide security. More enhanced way is

given in following diagram.

Figure 1. Proposed Architecture

Each security profile is associated with owner of the

profile and can be protected with password. Additionally

system also supports remote management of profile that is

handled by enterprise administrator and protected with the

password given by corporate world so that user cannot

R M. Sherkar et al, International Journal of Advanced Research in Computer Science, 6 (1), Jan–Feb, 2015,98-101

© 2015-19, IJARCS All Rights Reserved 101

tamper with data even if working from home. The main

objective is to protect data not to save phone because now-a-

days the price of smartphone is decreasing very rapidly. Also

daily backup is send to authorized mail-id which is in

encrypted form so that no one can tamer with the data. For

encryption purpose AES algorithm is used. It is a

cryptographic algorithm, used to protect data electronically

present on device. In particular, it is an iterative, symmetric-

key block cipher that can use keys of 128, 192, and 256 bits,

and do encryption and decryption of data in the blocks of

size 128 bits (16 bytes). In contrast to public-key ciphers,

which is using a pair of keys, the symmetric-key ciphers uses

same key to encrypt and decrypt data. Encrypted data

returned by block ciphers have the same number of bits that

of the input data. Iterative ciphers in AES uses a loop

structure that recurrently performs permutations and

substitutions of the input data provided by user. The total

storage size for operating system is given by following

equation.

total_size=size(OS)+

size(executing_app)+size(executing_appdata)

(1)

Where, size(OS) is the total size required by the

operating of handset, size(executing_app) is the size required

for executing the particular application and

 is the size required for storing

application’s data.

V. CONCLUSION

From the above sections, it is cleared that the given

framework allow user to do their official work while seating

at home plus it also provides security environment in which

app and data related to corporate world can’t be tampered by

apps related to third party. When user enter wrong login

credential at that time all data converted into encrypted from

which can be decrypted by authorized user.

VI. ACKNOWLEDGMENT

We have taken hard work in this assignment.

Nevertheless, it cannot be possible without the generous

support and aid of many dignities belongs to our institution.

We would like to show my sincere gratitude to all of them

who directly or indirectly supports us throughout.

VII. REFERENCES

[1] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCanDroid:

Automated security certification of Android applications,

Technical report, University of Maryland, 2009.

[2] Erika Chin and et. al., “Analyzing Inter-Application

Communication in Android,” University of California,

Berkeley, CA, USA, June-July 2011.

[3] E. Konstantinou and S. Wolthusen. Metamorphic virus:

Analysis and detection. Technical report, Information

Security Group at Royal Holloway, University of London,

2009.

[4] Muneer Ahmad Dar and Javed Parvez, “A Novel Strategy

to Enhance the Android Security Framework,” International

Journal of Computer Applications (Volume 91-No.8), April

2014.

[5] W. Enck, M. Ongtang, and P. McDaniel, “Understanding

Android Security,” IEEE Security and Privacy, vol. 7, no.

1, pp. 50-57, Jan./Feb. 2009.

[6] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev,

and C. Glezer, “Google Android: A Comprehensive

Security Assessment,” IEEE Security and Privacy, vol. 8,

no. 2, pp. 35-44, Mar./Apr. 2010.

[7] Yury Zhauniarovich and et. al., “MOSES: Supporting and

Enforcing Security Profiles on Smartphones,” IEEE

Transactions on Dependable and Secure Computing,

(Volume 11-No. 3), May-June 2014.

[8] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending

Android Permission Model and Enforcement with User-

Defined Runtime Constraints,” Proc. Fifth ACM Symp.

Information, Computer and Comm. Security (ASIACCS

’10), pp. 328-332, 2010.

[9] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel,

“Semantically Rich Application-Centric Security in

Android,” Proc. Ann. Computer Security Applications

Conf. (ACSAC ’09), pp. 73-82, 2009.

[10] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich,

“CRePE: A System for Enforcing Fine-Grained Context-

Related Policies on Android,” IEEE Trans. Information

Forensics and Security, vol. 7, no. 5, pp. 1426-1438, Oct.

2012.

[11] A.R. Beresford, A. Rice, and N. Skehin, “MockDroid:

Trading Privacy for Application Functionality on

Smartphones,” Proc. 12th Workshop Mobile Computing

Systems and Applications (HotMobile’11), pp. 49-54,

2011.

[12] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh, “Taming

Information Stealing Smartphone Applications (on

Android),” Proc. Fourth Int’l Conf. Trust and Trustworthy

Computing (TRUST ’11), pp. 93-107, 2011.

[13] W. Enck, P. Gilbert, B.-G. Chun, L.P. Cox, J. Jung, P.

McDaniel, and A.N. Sheth, “Taintdroid: An Information-

Flow Tracking System for Realtime Privacy Monitoring on

Smartphones,” Proc. Ninth USENIX Conf. Operating

Systems Design and Implementation (OSDI ’10), pp. 1-6,

2010.

[14] P. Hornyack, S. Han, J. Jung, S. Schechter, and D.

Wetherall, “These Aren’t the Droids You’re Looking for’:

Retroffiting Android to Protect Data from Imperious

Applications,” Proc. 18th ACM Conf. Computer and

Comm. Security (CCS ’11), pp. 639-652, 2011.

[15] D. Feth and A. Pretschner, “Flexible Data-Driven Security

for Android,” Proc. IEEE Sixth Int’l Conf. Software

Security and Reliability (SERE ’12), pp. 41-50, 2012.

[16] D. Feth and C. Jung, “Context-Aware, Data-Driven Policy

Enforcement for Smart Mobile Devices in Business

Environments,” Proc. Int’l Conf. Security and Privacy in

Mobile Information and Comm. Systems (MobiSec ’12),

pp. 69-80, 2012.

